Publications by authors named "Neil Grimster"

Casitas B-lymphoma proto-oncogene-b (Cbl-b) is a RING finger E3 ligase that has an important role in effector T cell function, acting as a negative regulator of T cell, natural killer (NK) cell, and B cell activation. A discovery effort toward Cbl-b inhibitors was pursued in which a generative AI design engine, REINVENT, was combined with a medicinal chemistry structure-based design to discover novel inhibitors of Cbl-b. Key to the success of this effort was the evolution of the "Design" phase of the Design-Make-Test-Analyze cycle to involve iterative rounds of an in silico structure-based drug design, strongly guided by physics-based affinity prediction and machine learning DMPK predictive models, prior to selection for synthesis.

View Article and Find Full Text PDF

Casitas B-lymphoma proto-oncogene-b (Cbl-b), a member of the Cbl family of RING finger E3 ubiquitin ligases, has been demonstrated to play a central role in regulating effector T-cell function. Multiple studies using gene-targeting approaches have provided direct evidence that Cbl-b negatively regulates T, B, and NK cell activation via a ubiquitin-mediated protein modulation. Thus, inhibition of Cbl-b ligase activity can lead to immune activation and has therapeutic potential in immuno-oncology.

View Article and Find Full Text PDF

Casitas B-lineage lymphoma proto-oncogene-b (Cbl-b) is a RING finger E3 ligase that is responsible for repressing T-cell, natural killer (NK) cell, and B-cell activation. The robust antitumor activity observed in Cbl-b deficient mice arising from elevated T-cell and NK-cell activity justified our discovery effort toward Cbl-b inhibitors that might show therapeutic promise in immuno-oncology, where activation of the immune system can drive the recognition and killing of cancer cells. We undertook a high-throughput screening campaign followed by structure-enabled optimization to develop a novel benzodiazepine series of potent Cbl-b inhibitors.

View Article and Find Full Text PDF

JAK-STAT cytokines are critical in regulating immunity. Persistent activation of JAK-STAT signaling pathways by cytokines drives chronic inflammatory diseases such as asthma. Herein, we report on the discovery of a highly JAK1-selective, ATP-competitive series of inhibitors having a 1000-fold selectivity over other JAK family members and the approach used to identify compounds suitable for inhaled administration.

View Article and Find Full Text PDF

Background: Janus Kinase (JAK) inhibition has recently demonstrated therapeutic efficacy in both restoring hair growth and resolving inflammation in Alopecia Areata (AA). These effects are dose dependent and mainly efficacious at ranges close to a questionable risk profile.

Objectives: We explored the possibility to separate the beneficial and adverse effects of JAK inhibition by selectively inhibiting JAK1 and thereby avoiding side effects associated with JAK2 blockade.

View Article and Find Full Text PDF

Spleen tyrosine kinase (SYK) is a non-receptor cytoplasmic kinase. Due to its pivotal role in B cell receptor and Fc-receptor signalling, inhibition of SYK has been a target of interest in a variety of diseases. Herein, we report the use of structure-based drug design to discover a series of potent macrocyclic inhibitors of SYK, with excellent kinome selectivity and in vitro metabolic stability.

View Article and Find Full Text PDF

Covalent PROTACs combine the cutting edge research areas of targeted covalent inhibitors (TCIs) and proteolysis targeting chimeras (PROTACs). This nascent field of research has already demonstrated several interesting findings, and holds an immense amount of potential to expand the druggable proteome. In this opinion, we present some of these intriguing early findings and discuss the potential advantages and disadvantages of this approach.

View Article and Find Full Text PDF

Spleen tyrosine kinase (SYK) is a non-receptor cytosolic kinase. Due to its pivotal role in B cell receptor and Fc-receptor signaling, inhibition of SYK has been targeted in a variety of disease areas. Herein, we report the optimization of a series of potent and selective SYK inhibitors, focusing on improving metabolic stability, pharmacokinetics and hERG inhibition.

View Article and Find Full Text PDF

JAK1, JAK2, JAK3, and TYK2 belong to the JAK (Janus kinase) family. They play critical roles in cytokine signaling. Constitutive activation of JAK/STAT pathways is associated with a wide variety of diseases.

View Article and Find Full Text PDF

Over the last ten years, targeted covalent inhibition has become a key discipline within medicinal chemistry research, most notably in the development of oncology therapeutics. One area where this approach is underrepresented, however, is in targeting protein-protein interactions. This is primarily because these hydrophobic interfaces lack appropriately located cysteine residues to allow for standard conjugate addition chemistry.

View Article and Find Full Text PDF

Over the past decade targeted covalent inhibitors have undergone a renaissance due to the clinical validation and regulatory approval of several small molecule therapeutics that are designed to irreversibly modify their target protein. Invariably, these compounds rely on the serendipitous placement of a cysteine residue proximal to the small molecule binding site; while this strategy has afforded numerous successes, it necessarily limits the number of proteins that can be targeted by this approach. This drawback has led several research groups to develop novel methodologies that target non-cysteine residues for covalent modification.

View Article and Find Full Text PDF

Janus kinases (JAKs) have been demonstrated to be critical in cytokine signaling and have thus been implicated in both cancer and inflammatory diseases. The JAK family consists of four highly homologous members: JAK1-3 and TYK2. The development of small-molecule inhibitors that are selective for a specific family member would represent highly desirable tools for deconvoluting the intricacies of JAK family biology.

View Article and Find Full Text PDF

Protein aggregation is a hallmark of several neurodegenerative diseases, including Alzheimer's and Parkinson's diseases. It has been shown that lysine residues play a key role in the formation of these aggregates. Thus, the ability to disrupt aggregate formation by covalently modifying lysine residues could lead to the discovery of therapeutically relevant antiamyloidogenesis compounds.

View Article and Find Full Text PDF

Janus kinases (JAKs) are a family of four enzymes; JAK1, JAK2, JAK3 and tyrosine kinase 2 (TYK2) that are critical in cytokine signalling and are strongly linked to both cancer and inflammatory diseases. There are currently two launched JAK inhibitors for the treatment of human conditions: tofacitinib for Rheumatoid arthritis (RA) and ruxolitinib for myeloproliferative neoplasms including intermediate or high risk myelofibrosis and polycythemia vera. Areas covered: This review covers patents claiming activity against one or more JAK family members in the period 2013-2015 inclusive, and covers 95 patents from 42 applicants, split over two parts.

View Article and Find Full Text PDF

Janus kinases (JAKs) are a family of four enzymes; JAK1, JAK2, JAK3 and tyrosine kinase 2 (TYK2) that are critical in cytokine signalling and are strongly linked to both cancer and inflammatory diseases. There are currently two launched JAK inhibitors for the treatment of human conditions: tofacitinib for Rheumatoid arthritis (RA) and ruxolitinib for myeloproliferative neoplasms including intermediate or high risk myelofibrosis and polycythemia vera. Areas covered: This review covers patents claiming activity against one or more JAK family members in the period 2013-2015 inclusive, and covers 95 patents from 42 applicants, split over two parts.

View Article and Find Full Text PDF

Targeted covalent inhibition of disease-associated proteins has become a powerful methodology in the field of drug discovery, leading to the approval of new therapeutics. Nevertheless, current approaches are often limited owing to their reliance on a cysteine residue to generate the covalent linkage. Here we used aryl boronic acid carbonyl warheads to covalently target a noncatalytic lysine side chain, and generated to our knowledge the first reversible covalent inhibitors for Mcl-1, a protein-protein interaction (PPI) target that has proven difficult to inhibit via traditional medicinal chemistry strategies.

View Article and Find Full Text PDF

A convenient one-pot asymmetric synthesis of 2,3-dihydropyrroles from in situ generated triflated triazoles and olefins is described that further expands the utility of azavinyl carbene chemistry and provides access to an important class of cyclic enamides. Mechanistic investigations support the involvement of triflated cyclopropylaldimine intermediates in the formation of 2,3-dihydropyrrole. To the best of our knowledge, this is the first example of a chiral Brønsted acid catalyzed rearrangement of cyclopropylimines into enantioenriched 2,3-dihydropyrroles.

View Article and Find Full Text PDF

We seek fluorogenic small molecules that generate a fluorescent conjugate signal if and only if they react with a given protein-of-interest (i.e., small molecules for which noncovalent binding to the protein-of-interest is insufficient to generate fluorescence).

View Article and Find Full Text PDF
Article Synopsis
  • Protein misfolding and aggregation are linked to diseases like Alzheimer's and Parkinson's, known as amyloid diseases due to the amyloid fibril deposits associated with them.
  • Epigallocatechin-3-gallate (EGCG), found in green tea, can prevent these aggregates and remodel existing amyloid fibrils, though the exact mechanisms behind its effectiveness are still unclear.
  • The study reveals that EGCG's remodeling of amyloid fibrils relies on its oxidation and its ability to bind to fibrils, inhibiting further aggregation while indicating that oxidized EGCG may react with fibrils but isn’t the main cause of remodeling.
View Article and Find Full Text PDF

Molecules that bind selectively to a given protein and then undergo a rapid chemoselective reaction to form a covalent conjugate have utility in drug development. Herein a library of 1,3,4-oxadiazoles substituted at the 2 position with an aryl sulfonyl fluoride and at the 5 position with a substituted aryl known to have high affinity for the inner thyroxine binding subsite of transthyretin (TTR) was conceived of by structure-based design principles and was chemically synthesized. When bound in the thyroxine binding site, most of the aryl sulfonyl fluorides react rapidly and chemoselectively with the pKa-perturbed K15 residue, kinetically stabilizing TTR and thus preventing amyloid fibril formation, known to cause polyneuropathy.

View Article and Find Full Text PDF

The acetylcholine-binding proteins (AChBPs), which serve as structural surrogates for the extracellular domain of nicotinic acetylcholine receptors (nAChRs), were used as reaction templates for in situ click-chemistry reactions to generate a congeneric series of triazoles from azide and alkyne building blocks. The catalysis of in situ azide-alkyne cycloaddition reactions at a dynamic subunit interface facilitated the synthesis of potentially selective compounds for nAChRs. We investigated compound sets generated in situ with soluble AChBP templates through pharmacological characterization with α7 and α4β2 nAChRs and 5-hydroxytryptamine type 3A receptors.

View Article and Find Full Text PDF

Nicotinic acetylcholine receptors (nAChRs), which are responsible for mediating key physiological functions, are ubiquitous in the central and peripheral nervous systems. As members of the Cys loop ligand-gated ion channel family, neuronal nAChRs are pentameric, composed of various permutations of α (α2 to α10) and β (β2 to β4) subunits forming functional heteromeric or homomeric receptors. Diversity in nAChR subunit composition complicates the development of selective ligands for specific subtypes, since the five binding sites reside at the subunit interfaces.

View Article and Find Full Text PDF

Pharmacologic chaperoning is a therapeutic strategy being developed to improve the cellular folding and trafficking defects associated with Gaucher disease, a lysosomal storage disorder caused by point mutations in the gene encoding acid-β-glucosidase (GCase). In this approach, small molecules bind to and stabilize mutant folded or nearly folded GCase in the endoplasmic reticulum (ER), increasing the concentration of folded, functional GCase trafficked to the lysosome where the mutant enzyme can hydrolyze the accumulated substrate. To date, the pharmacologic chaperone (PC) candidates that have been investigated largely have been active site-directed inhibitors of GCase, usually containing five- or six-membered rings, such as modified azasugars.

View Article and Find Full Text PDF

Highly reactive rhodium(II) N-trifluoromethylsulfonyl azavinyl carbenes are formed in situ from NH-1,2,3-triazoles, triflic anhydride, and rhodium carboxylates. They rapidly and selectively react with olefins, providing cyclopropane carboxaldehydes and 2,3-dihydropyrroles in generally excellent yields and high enantio- and diastereoselectivity.

View Article and Find Full Text PDF

We have developed a new site-selective Cu(II)-catalyzed C-H bond functionalization process that can selectively arylate indoles at either the C3 or C2 position under mild conditions. The scope of the arylation process is broad and tolerates broad functionality on both the indole and aryl unit, which makes it amenable to further elaboration. The mechanism of the arylation reaction is proposed to proceed via a Cu(III)-aryl species that undergoes initial electrophilic addition at the C3 position of the indole motif.

View Article and Find Full Text PDF