Publications by authors named "Neil Crickmore"

Understanding the molecular mechanisms underlying insect resistance to (Bt) pesticidal proteins is crucial for sustainable pest management. Here, we found that downregulation of the ecdysone oxidase gene () in the normal feeding stages contributes to increased 20-hydroxyecdysone (20E) titer and mediates resistance to the Bt Cry1Ac toxin. The gene was cloned and its expression was significantly downregulated in the midgut of Bt-resistant and Cry1Ac-selected .

View Article and Find Full Text PDF

Introduction: Understanding how insects and mites develop resistance to chlorpyrifos is crucial for effective field management. Although extensive research has demonstrated that T. urticae exhibits high resistance to chlorpyrifos, the specific resistance mechanism remains elusive.

View Article and Find Full Text PDF

Mounting evidence suggests that insect hormones associated with growth and development also participate in pathogen defense. We have discovered a previously undescribed midgut transcriptional control pathway that modulates the availability of 20-hydroxyecdysone (20E) in a worldwide insect pest (), allowing it to defeat the major virulence factor of an insect pathogen (Bt). A reduction of the transcriptional inhibitor (PxDfd) increases the expression of a midgut microRNA (miR-8545), which in turn represses the expression of a newly identified ecdysteroid-degrading glucose dehydrogenase (PxGLD).

View Article and Find Full Text PDF

Cry toxins, produced by the bacterium , are of significant agronomic value worldwide due to their potent and highly specific activity against various insect orders. However, some of these pore-forming toxins display specific activity against a range of human cancer cells whilst possessing no known insecticidal activity; Cry41Aa is one such toxin. Cry41Aa has similarities to its insecticidal counterparts in both its 3-domain toxic core structure and pore-forming abilities, but how it has evolved to target human cells is a mystery.

View Article and Find Full Text PDF
Article Synopsis
  • Bacillus thuringiensis (Bt) is a bacterium that makes proteins to kill harmful insects like Spodoptera frugiperda, which damages crops.
  • Researchers studied 95 different Bt strains and found that the ones that were really toxic to the pest had a specific gene called vip3A.
  • This means that looking for the vip3A gene can help scientists find new, stronger insecticides for protecting plants in the future.
View Article and Find Full Text PDF

Bacillus thuringiensis (Bt) Cry2Aa is a member of the Cry pore-forming, 3-domain, toxin family with activity against both lepidopteran and dipteran insects. Although domains II and III of the Cry toxins are believed to represent the primary specificity determinant through specific binding to cell receptors, it has been proposed that the pore-forming domain I of Cry2Aa also has such a role. Thus, a greater understanding of the functions of Cry2Aa's different domains could potentially be helpful in the rational design of improved toxins.

View Article and Find Full Text PDF

The resistance of pest insects to biopesticides based on the bacterium Bacillus thuringiensis (Bt) is normally associated with changes to the receptors involved in the mechanism of action of the pesticidal proteins produced by Bt. In some strains of Plutella xylostella (the diamondback moth) resistance has evolved through a signalling mechanism in which the genes encoding the receptor proteins are downregulated whereas in others it has been linked to structural changes in the receptors themselves. One such well characterized mutation is in the ABCC2 gene indicating that changes to this protein can result in resistance.

View Article and Find Full Text PDF

It has long been known that while both the Bacillus thuringiensis pesticidal proteins Cry2Aa and Cry2Ab have wide-ranging activities against lepidopteran insects only the former has activity against the mosquito Aedes aegypti. We have previously shown that this differential specificity is influenced by the N-terminal region of these proteins and here demonstrate that this is due to these sections affecting proteolytic activation. Enzymes from the midgut of A.

View Article and Find Full Text PDF
Article Synopsis
  • Bioinsecticides and transgenic crops using Bacillus thuringiensis (Bt) are effective against insect pests, but resistance to these methods is a growing issue.
  • Recent research shows that high levels of juvenile hormone (JH) in the insect Plutella xylostella help it resist Bt while also improving its fitness, although the reasons for this increase in JH are not fully understood.
  • The study reveals that specific RNA modification genes (PxMettl3 and PxMettl14) control JH levels by repressing a JH-degrading enzyme, thereby highlighting the role of epigenetic regulation in insect resistance to pathogens and expanding our understanding of JH's influence on fitness.
View Article and Find Full Text PDF

The proteins Tpp49Aa1 and Cry48Aa1 can together act as a toxin toward the mosquito and have potential use in biocontrol. Given that proteins with sequence homology to the individual proteins can have activity alone against other insect species, the structure of Tpp49Aa1 was solved in order to understand this protein more fully and inform the design of improved biopesticides. Tpp49Aa1 is naturally expressed as a crystalline inclusion within the host bacterium, and MHz serial femtosecond crystallography using the novel nanofocus option at an X-ray free electron laser allowed rapid and high-quality data collection to determine the structure of Tpp49Aa1 at 1.

View Article and Find Full Text PDF

Cell wall hydrolases are ubiquitous among spore-form bacteria and essential for mother cell lysis. In this study, a novel cell wall hydrolase gene involved in mother cell lysis was characterized from subsp (Bti) strain Bt-59. was specifically expressed in Bti and located in the large plasmid carrying the insecticidal genes.

View Article and Find Full Text PDF

The rapid evolution of pest resistance threatens the sustainable utilization of bioinsecticides such as abamectin, and so deciphering the molecular mechanisms affecting toxicity and resistance is essential for their long-term application. Historical studies of abamectin resistance in arthropods have mainly focused on mechanisms involving the glutamate-gated chloride channel (GluCl) targets, with the role of metabolic processes less clear. The two-spotted spider mite, Tetranychus urticae, is a generalist herbivore notorious for rapidly developing resistance to pesticides worldwide, and abamectin has been widely used for its control in the field.

View Article and Find Full Text PDF

An automated method was developed for differentiating closely related () species, especially biopesticide from other human pathogens, and (). In the current research, four typing methods were initially compared, including multi-locus sequence typing (MLST), single-copy core genes phylogenetic analysis (SCCGPA), dispensable genes content pattern analysis (DGCPA) and composition vector tree (CVTree), to analyze the genomic variability of 23 strains from , , , and serovars. The CVTree method was the best option to be used for typing strains since it proved to be the fastest method, whilst giving high-resolution data about the strains.

View Article and Find Full Text PDF

The pesticidal toxins of Bacillus thuringiensis (Bt) supply the active proteins for genetically modified insect-resistant crops. There is therefore keen interest in finding new toxins, or improving known toxins, in order to increase the mortality of various targets. The production and screening of large libraries of mutagenized toxins are among the means of identifying improved toxins.

View Article and Find Full Text PDF

Ongoing host-pathogen interactions can trigger a coevolutionary arms race, while genetic diversity within the host can facilitate its adaptation to pathogens. Here, we used the diamondback moth () and its pathogen (Bt) as a model for exploring an adaptive evolutionary mechanism. We found that insect host adaptation to the primary Bt virulence factors was tightly associated with a short interspersed nuclear element (SINE - named SE2) insertion into the promoter of the transcriptionally activated gene.

View Article and Find Full Text PDF

Passage experiments that sequentially infect hosts with parasites have long been used to manipulate virulence. However, for many invertebrate pathogens, passage has been applied naively without a full theoretical understanding of how best to select for increased virulence and this has led to very mixed results. Understanding the evolution of virulence is complex because selection on parasites occurs across multiple spatial scales with potentially different conflicts operating on parasites with different life histories.

View Article and Find Full Text PDF

Cotton bollworm (Helicoverpa armigera) is an economically important pest, which is difficult to manage due to its biological and ecological traits, and resistance to most insecticides. Alternative compounds for the sustainable management of H. armigera are needed.

View Article and Find Full Text PDF

Maintaining fitness during pathogen infection is vital for host survival as an excessive response can be as detrimental as the infection itself. Fitness costs are frequently associated with insect hosts countering the toxic effect of the entomopathogenic bacterium Bacillus thuringiensis (Bt), which delay the evolution of resistance to this pathogen. The insect pest Plutella xylostella has evolved a mechanism to resist Bt toxins without incurring significant fitness costs.

View Article and Find Full Text PDF

Rapid evolution of resistance in crop pests to (Bt) products threatens their widespread use, especially as pests appear to develop resistance through a range of different physiological adaptations. With such a diverse range of mechanisms reported, researchers have resorted to multi-omic approaches to understand the molecular basis of resistance. Such approaches generate a lot of data making it difficult to establish where causal links between physiological changes and resistance exist.

View Article and Find Full Text PDF

Cry41Aa, also called parasporin-3, belongs to a group of toxins from the entomopathogenic bacterium that show activity against human cancer cells. Cry41Aa exhibits preferential cytocidal activity towards HL-60 (human promyelocytic leukaemia cells) and HepG2 (human liver cancer cells) cell lines after being proteolytically activated. To better understand the mechanism of action of Cry41Aa, we evolved resistance in HepG2 cells through repeated exposure to increasing doses of the toxin.

View Article and Find Full Text PDF

Pesticidal proteins derived from the bacterium Bacillus thuringiensis, have provided the bases for a diverse array of pest management tools ranging from natural products used in organic agriculture, to modern biotechnological approaches. With advances in genome sequencing technologies and protein structure determination, an increasing number of pesticidal proteins from myriad bacterial species have been identified. The Bacterial Pesticidal Protein Resource Center (BPPRC) has been established to provide informational and analytical resources on the wide range of pesticidal proteins derived from bacteria that have potential utility for arthropod management.

View Article and Find Full Text PDF

Deciphering the molecular mechanisms of insect resistance to Bacillus thuringiensis (Bt) based biotechnology products including Bt sprays and Bt crops is critical for the long-term application of Bt technology. Previously, we established that down-regulation of the ABC transporter gene PxABCG1, trans-regulated by the MAPK signaling pathway, contributed to high-level resistance to Bt Cry1Ac toxin in diamondback moth, Plutella xylostella (L.).

View Article and Find Full Text PDF
Article Synopsis
  • Biopesticides and transgenic crops using Bacillus thuringiensis (Bt) toxins face challenges in effectiveness due to the rapid evolution of insect resistance, primarily in the diamondback moth, Plutella xylostella.
  • Research utilized CRISPR/Cas9 to create knockout strains, revealing significant resistance increases—4482-fold for ABCC2 and ABCC3 transporters, and 1425-fold for aminopeptidases APN1 and APN3a, highlighting their roles as toxin receptors.
  • Combining these knockouts showed a hybrid strain with over 34,000-fold resistance, demonstrating functional redundancy among the receptor types, while noting that the quadruple knockout was less fit than regular moths, suggesting
View Article and Find Full Text PDF

The benefits of biopesticides and transgenic crops based on the insecticidal Cry-toxins from Bacillus thuringiensis (Bt) are considerably threatened by insect resistance evolution, thus, deciphering the molecular mechanisms underlying insect resistance to Bt products is of great significance to their sustainable utilization. Previously, we have demonstrated that the down-regulation of PxmALP in a strain of Plutella xylostella (L.) highly resistant to the Bt Cry1Ac toxin was due to a hormone-activated MAPK signaling pathway and contributed to the resistance phenotype.

View Article and Find Full Text PDF

Host-pathogen interactions are central components of ecological networks where the MAPK signaling pathways act as central hubs of these complex interactions. We have previously shown that an insect hormone modulated MAPK signaling cascade participates as a general switch to trans-regulate differential expression of diverse midgut genes in the diamondback moth, Plutella xylostella (L.) to cope with the insecticidal action of Cry1Ac toxin, produced by the entomopathogenic bacterium Bacillus thuringiensis (Bt).

View Article and Find Full Text PDF