Aim To calculate fallow time (FT) required following dental aerosol generating procedures (AGPs) in both a dental hospital (mechanically ventilated) and primary care (non-mechanically ventilated). Secondary outcomes were to identify spread and persistence of aerosol in open clinics compared to closed surgeries (mechanically ventilated environment), and identify if extraoral scavenging (EOS) reduces FT and production of aerosol.Methods In vitro simulation of fast handpiece cavity preparations using a manikin was conducted in a mechanically and non-mechanically ventilated environment using Optical Particle Sizer and NanoScan at baseline, during the procedure and fallow period.
View Article and Find Full Text PDFIntroduction Transmission of SARS-CoV-2 through aerosol has been suggested, particularly in the presence of highly concentrated aerosols in enclosed environments. It is accepted that aerosols are produced during a range of dental procedures, posing potential risks to both dental practitioners and patients. There has been little agreement concerning aerosol transmission associated with orthodontics and associated mitigation.
View Article and Find Full Text PDFIntroduction This study was conducted in light of the SARS-CoV-2 pandemic, which brought UK dentistry to a standstill. The market has seen a recent influx of unproven extraoral scavengers (EOSs), which claim to reduce the risk of particulate spread.Aims To investigate the efficacy of a commercially available EOS device on contamination reduction during dental aerosol generating procedures (AGPs).
View Article and Find Full Text PDF