Although individual athletic performance generally tends to peak in the evening, individuals who exhibit a strong diurnal preference perform better closer to their circadian peak. Time-of-day performance effects are influenced by circadian phenotype (diurnal preference and chronotype-sleep-wake patterns), homeostatic energy reserves and, potentially, genotype, yet little is known about how these factors influence physiological effort. Here, we investigate the effects of time of day, diurnal preference, chronotype, and (a circadian clock gene) genotype on both effort and performance in a population of Division I collegiate swimmers (n = 27).
View Article and Find Full Text PDFPoor performance in pressure-filled situations, or "choking under pressure," has largely been explained by two different classes of theories. Distraction theories propose that choking occurs because attention needed to perform the task at hand is coopted by task-irrelevant thoughts and worries. Explicit monitoring theories claim essentially the opposite-that pressure prompts individuals to attend closely to skill processes in a manner that disrupts execution.
View Article and Find Full Text PDFThe cortical representation of eye position is still uncertain. In the monkey a proprioceptive representation of the extraocular muscles (EOM) of an eye were recently found within the contralateral central sulcus. In humans, we have previously shown a change in the perceived position of the right eye after a virtual lesion with rTMS over the left somatosensory area.
View Article and Find Full Text PDFPrevious research has demonstrated that Parkinson's disease patients have an increased susceptibility to response conflict. In the present study, the authors investigate whether Parkinson's patients have a similar sensitivity to interference from observed movements. In all, 10 patients and 10 controls performed horizontal and vertical arm movements while watching a video of either a person performing similar movements or a moving dot.
View Article and Find Full Text PDFDespite their name, resting state networks (RSNs) provide a clear indication that the human brain may be hard-working. Unlike the cardiac and respiratory systems, which greatly reduce their rate of function during periods of inactivity, the human brain may have additional responsibilities during rest. One particularly intriguing function performed by the resting brain is the consolidation of recent learned information, which is known to take place over a period of several hours after learning.
View Article and Find Full Text PDFFunctionally related brain networks are engaged even in the absence of an overt behavior. The role of this resting state activity, evident as low-frequency fluctuations of BOLD (see [1] for review, [2-4]) or electrical [5, 6] signals, is unclear. Two major proposals are that resting state activity supports introspective thought or supports responses to future events [7].
View Article and Find Full Text PDFIn explicit sequence learning tasks, an improvement in performance (skill) typically occurs after sleep-leading to the recent literature on sleep-dependent motor consolidation. Consolidation can also be facilitated during wakefulness if declarative knowledge for the sequence is reduced through a secondary cognitive task. Accordingly, declarative and procedural consolidation processes appear to mutually interact.
View Article and Find Full Text PDFMany studies of bimanual coordination have focused on the pervasive interference observed when people plan and produce non-symmetric movements. We investigated how the interference observed in one challenging bimanual task, simultaneously drawing non-symmetric three-sided squares (e.g.
View Article and Find Full Text PDFJ Exp Psychol Hum Percept Perform
October 2007
Investigations of bimanual movements have shed considerable insight on the constraints underlying our ability to perform coordinated actions. One prominent limitation is evident when people are required to produce reaching movements in which the two trajectories are of different amplitudes and/or directions. This effect, however, is only obtained when the movements are cued symbolically (e.
View Article and Find Full Text PDFConflict during bimanual movements can arise during the selection of movement goals or during movement planning and execution. We demonstrate a behavioral and neural dissociation of these 2 types of conflict. During functional magnetic resonance imaging scanning, participants performed bimanual reaching movements with symmetric (congruent) or orthogonal (incongruent) trajectories.
View Article and Find Full Text PDFFunctional imaging studies have revealed recruitment of ipsilateral motor areas during the production of sequential unimanual finger movements. This phenomenon is more prominent in the left hemisphere during left-hand movements than in the right hemisphere during right-hand movements. Here we investigate whether this lateralization pattern is related specifically to the sequential structure of the unimanual action or generalizes to other complex movements.
View Article and Find Full Text PDF