Publications by authors named "Neil A Roberts"

Little attention was given to heparanase 2 (Hpa2) over the last two decades, possibly because it lacks a heparan sulfate (HS)-degrading activity typical of heparanase. Emerging results suggest, nonetheless, that Hpa2 plays a role in human pathologies, including cancer progression where it functions as a tumor suppressor. Here, we examined the role of Hpa2 in cervical carcinoma.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers studied early-onset urinary tract disorders like urofacial syndrome (UFS), which is caused by a mutation affecting bladder function and can lead to kidney failure.
  • Current treatments don't address the core issues of these disorders, prompting the exploration of a gene therapy approach using an adeno-associated viral (AAV9) vector to deliver the missing gene in neonatal mice.
  • The treatment successfully expressed the missing protein in the pelvic ganglia and improved bladder function, suggesting that AAV9 gene therapy may offer a potential cure for UFS and related neurogenic bladder issues.
View Article and Find Full Text PDF

Introduction: Urofacial, or Ochoa, syndrome (UFS) is an autosomal recessive disease featuring a dyssynergic bladder with detrusor smooth muscle contracting against an undilated outflow tract. It also features an abnormal grimace. Half of individuals with UFS carry biallelic variants in , whereas other rare families carry variants in is immunodetected in pelvic ganglia sending autonomic axons into the bladder.

View Article and Find Full Text PDF
Article Synopsis
  • The study analyzed four new families with UFS using genetic sequencing and identified novel variants affecting kidney function and bladder nerve development.
  • The findings suggest that mutations in heparanase-2 disrupt normal neuronal development, highlighting its role in the pathobiology of UFS.
View Article and Find Full Text PDF

Diabetes mellitus (DM) is the leading cause of chronic kidney disease and diabetic nephropathy is widely studied. In contrast, the pathobiology of diabetic urinary bladder disease is less understood despite dysfunctional voiding being common in DM. We hypothesised that diabetic cystopathy has a characteristic molecular signature.

View Article and Find Full Text PDF

Human urinary tract malformations can cause dysfunctional voiding, urosepsis and kidney failure. Other affected individuals, with severe phenotypes on fetal ultrasound screening, undergo elective termination. Currently, there exist no specific treatments that target the primary biological disease mechanisms that generate these urinary tract malformations.

View Article and Find Full Text PDF

Aims: Urofacial syndrome (UFS) is an autosomal recessive disease characterized by detrusor contraction against an incompletely dilated outflow tract. This dyssynergia causes dribbling incontinence and incomplete voiding. Around half of individuals with UFS have biallelic mutations of HPSE2 that encodes heparanase 2, a protein found in pelvic ganglia and bladder nerves.

View Article and Find Full Text PDF

Urofacial syndrome (UFS) is a rare but potentially devastating autosomal recessive disease. It comprises both incomplete urinary bladder emptying and a facial grimace upon smiling. A subset of individuals with the disease has biallelic mutations of HPSE2, coding for heparanase-2.

View Article and Find Full Text PDF

Transforming growth factor-β (TGFβ) has been reported to be dysregulated in malformed ureters. There exists, however, little information on whether altered TGFβ levels actually perturb ureter development. We therefore hypothesised that TGFβ has functional effects on ureter morphogenesis.

View Article and Find Full Text PDF

The urinary tract comprises the renal pelvis, the ureter, the urinary bladder, and the urethra. The tract acts as a functional unit, first propelling urine from the kidney to the bladder, then storing it at low pressure inside the bladder which intermittently and completely voids urine through the urethra. Congenital diseases of these structures can lead to a range of diseases sometimes associated with fetal losses or kidney failure in childhood and later in life.

View Article and Find Full Text PDF

Mutations in leucine-rich-repeats and immunoglobulin-like-domains 2 (LRIG2) or in heparanase 2 (HPSE2) cause urofacial syndrome, a devastating autosomal recessive disease of functional bladder outlet obstruction. It has been speculated that urofacial syndrome has a neural basis, but it is unknown whether defects in urinary bladder innervation are present. We hypothesized that urofacial syndrome features a peripheral neuropathy of the bladder.

View Article and Find Full Text PDF

ACTB encodes β-actin, an abundant cytoskeletal housekeeping protein. In humans, postulated gain-of-function missense mutations cause Baraitser-Winter syndrome (BRWS), characterized by intellectual disability, cortical malformations, coloboma, sensorineural deafness, and typical facial features. To date, the consequences of loss-of-function ACTB mutations have not been proven conclusively.

View Article and Find Full Text PDF

An ex vivo experimental strategy that replicates in vivo intestinal development would in theory provide an accessible setting with which to study normal and dysmorphic gut biology. The current authors recently described a system in which mouse embryonic jejunal segments were explanted onto semipermeable platforms and fed with chemically defined serum-free media. Over 3 days in organ culture, explants formed villi and they began to undergo spontaneous peristalsis.

View Article and Find Full Text PDF

Heimler syndrome (HS) is a rare recessive disorder characterized by sensorineural hearing loss (SNHL), amelogenesis imperfecta, nail abnormalities, and occasional or late-onset retinal pigmentation. We ascertained eight families affected by HS and, by using a whole-exome sequencing approach, identified biallelic mutations in PEX1 or PEX6 in six of them. Loss-of-function mutations in both genes are known causes of a spectrum of autosomal-recessive peroxisome-biogenesis disorders (PBDs), including Zellweger syndrome.

View Article and Find Full Text PDF

We present a scientific investigation into the pathogenesis of a urinary bladder disease. The disease in question is called urofacial syndrome (UFS), a congenital condition inherited in an autosomal recessive manner. UFS features incomplete urinary bladder emptying and vesicoureteric reflux, with a high risk of recurrent urosepsis and end-stage renal disease.

View Article and Find Full Text PDF

The ability to grow embryonic organs ex vivo provides an opportunity to follow their differentiation in a controlled environment, with resulting insights into normal development. Additionally, similar strategies can be used to assess effects on organogenesis of physical and chemical manipulations. This study aimed to create an organ culture model with which to test physical manipulations to enhance healing of gut segments, thus generating a single functional organ.

View Article and Find Full Text PDF

Urofacial syndrome (UFS) is an autosomal recessive congenital disease featuring grimacing and incomplete bladder emptying. Mutations of HPSE2, encoding heparanase 2, a heparanase 1 inhibitor, occur in UFS, but knowledge about the HPSE2 mutation spectrum is limited. Here, seven UFS kindreds with HPSE2 mutations are presented, including one with deleted asparagine 254, suggesting a role for this amino acid, which is conserved in vertebrate orthologs.

View Article and Find Full Text PDF

Urofacial syndrome (UFS; previously Ochoa syndrome) is an autosomal recessive disease characterized by incomplete bladder emptying during micturition. This is associated with a dyssynergia in which the urethral walls contract at the same time as the detrusor smooth muscle in the body of the bladder. UFS is also characterized by an abnormal facial expression upon smiling, and bilateral weakness in the distribution of the facial nerve has been reported.

View Article and Find Full Text PDF

The urofacial, or Ochoa, syndrome is characterised by congenital urinary bladder dysfunction together with an abnormal grimace upon smiling, laughing and crying. It can present as fetal megacystis. Postnatal features include urinary incontinence and incomplete bladder emptying due to simultaneous detrusor muscle and bladder outlet contractions.

View Article and Find Full Text PDF

Knowledge of human pancreas development underpins our interpretation and exploitation of human pluripotent stem cell (PSC) differentiation toward a β-cell fate. However, almost no information exists on the early events of human pancreatic specification in the distal foregut, bud formation, and early development. Here, we have studied the expression profiles of key lineage-specific markers to understand differentiation and morphogenetic events during human pancreas development.

View Article and Find Full Text PDF

Urofacial syndrome (UFS) (or Ochoa syndrome) is an autosomal-recessive disease characterized by congenital urinary bladder dysfunction, associated with a significant risk of kidney failure, and an abnormal facial expression upon smiling, laughing, and crying. We report that a subset of UFS-affected individuals have biallelic mutations in LRIG2, encoding leucine-rich repeats and immunoglobulin-like domains 2, a protein implicated in neural cell signaling and tumorigenesis. Importantly, we have demonstrated that rare variants in LRIG2 might be relevant to nonsyndromic bladder disease.

View Article and Find Full Text PDF

Protein kinase D (PKD) is activated downstream of protein kinase C (PKC) in many cell types, although little is known about the mechanisms that regulate PKD in adult myocardium. Exposure of cultured adult rat ventricular myocytes (ARVM) to phorbol 12-myristate 13-acetate (PMA; 100 nM for 5 min) activated PKD, as evidenced by significantly increased phosphorylation at Ser744/8 (PKC phosphorylation sites) and Ser916 (autophosphorylation site). PKD activation occurred concomitantly with translocation of the enzyme from the cytosolic to the particulate fraction.

View Article and Find Full Text PDF

1 Bisindolylmaleimide inhibitors of protein kinase C (PKC), such as GF109203X and Ro31-8220, have been used to investigate the roles of PKC isoforms in many cellular processes in cardiac myocytes, but these agents may also inhibit p90RSK activity. 2 In in vitro kinase assays utilising 50 microM [ATP], GF109203X and Ro31-8220 inhibited p90RSK isoforms (IC50 values for inhibition of RSK1, RSK2 and RSK3, respectively, were 610, 310 and 120 nM for GF109203X, and 200, 36 and 5 nM for Ro31-8220) as well as classical and novel PKC isoforms (IC50 values for inhibition of PKCalpha and PKCepsilon, respectively, were 8 and 12 nM for GF109203X, and 4 and 8 nM for Ro31-8220). 3 At physiological [ATP] (5 mM), both GF109203X and Ro31-8220 exhibited reduced potency as inhibitors of RSK2, PKCalpha and PKCepsilon (IC50 values of 7400, 310 and 170 nM, respectively, for GF109203X, and 930, 150 and 140 nM, respectively, for Ro31-8220), with the latter agent retaining its relatively greater potency.

View Article and Find Full Text PDF

Bisindolylmaleimide protein kinase C (PKC) inhibitors, such as GF109203X and Ro31-8220, are used as pharmacological tools in many cellular systems. However, in vitro, GF109203X and Ro31-8220 also inhibit the 70kDa ribosomal S6 kinase (p70(S6K)) with similar potency. We determined whether GF109203X and Ro31-8220 inhibit p70(S6K) activity in intact adult rat ventricular myocytes (ARVM).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: