Publications by authors named "Neifeld M"

Article Synopsis
  • - Combinatorial optimization problems, applicable in fields like social networks and AI, are often NP-hard, meaning finding solutions is computationally challenging.
  • - This text introduces a coherent Ising machine (CIM) that uses injection-locked multicore fiber lasers and spatial light modulators to tackle these optimization problems by minimizing Ising energy functions.
  • - A proof-of-principle demonstration showed that the CIM accurately solved Ising Hamiltonians for up to thirteen nodes, achieving around 90% accuracy in finding the ground state energy, while also discussing challenges in scalability and programmability.
View Article and Find Full Text PDF

For the first time, we demonstrate injection locking and single frequency operation of a multi-core Yb-doped phosphate fiber laser (MCF). The 19 MCF laser cores operated in CW mode at 1030 nm. Each laser core was locked to the frequency and polarization of the single-frequency master laser, and produced milliwatts of power with similar lasing thresholds.

View Article and Find Full Text PDF

We are presenting a compact radar range system with a scale factor of 10. Replacing the radio frequency (RF) by optical wavelength (300 THz), the system easily fit on a tabletop. We used interferometric time-of-flight to reproduce radar ranging measurements.

View Article and Find Full Text PDF

The probabilistic graphical models (PGMs) are tools that are used to compute probability distributions over large and complex interacting variables. They have applications in social networks, speech recognition, artificial intelligence, machine learning, and many more areas. Here, we present an all-optical implementation of a PGM through the sum-product message passing algorithm (SPMPA) governed by a wavelength multiplexing architecture.

View Article and Find Full Text PDF

Non-destructive testing (NDT) by x-ray imaging is commonly used for finding manufacturing defects, cargo inspection, or security screening. These tasks can be regarded as examples of a detection problem where a target is either present or not. Task-specific information (TSI) [J.

View Article and Find Full Text PDF

The radar cross section of an object is an important electromagnetic property that is often measured in anechoic chambers. However, for very large and complex structures such as ships or sea and land clutters, this common approach is not practical. The use of computer simulations is also not viable since it would take many years of computational time to model and predict the radar characteristics of such large objects.

View Article and Find Full Text PDF

Here, we present the engineering trade studies of a free-space optical communication system operating over a 30 km maritime channel for the months of January and July. The system under study follows the BB84 protocol with the following assumptions: a weak coherent source is used, Eve is performing the intercept resend attack and photon number splitting attack, prior knowledge of Eve's location is known, and Eve is allowed to know a small percentage of the final key. In this system, we examine the effect of changing several parameters in the following areas: the implementation of the BB84 protocol over the public channel, the technology in the receiver, and our assumptions about Eve.

View Article and Find Full Text PDF

Adaptive compressive measurements can offer significant system performance advantages due to online learning over non-adaptive or static compressive measurements for a variety of applications, such as image formation and target identification. However, such adaptive measurements tend to be sub-optimal due to their greedy design. Here, we propose a non-greedy adaptive compressive measurement design framework and analyze its performance for a face recognition task.

View Article and Find Full Text PDF

We investigate a multiple spatial modes based quantum key distribution (QKD) scheme that employs multiple independent parallel beams through a marine free-space optical channel over open ocean. This approach provides the potential to increase secret key rate (SKR) linearly with the number of channels. To improve the SKR performance, we describe a back-propagation mode (BPM) method to mitigate the atmospheric turbulence effects.

View Article and Find Full Text PDF

We theoretically investigate and experimentally demonstrate a RF-assisted four-state continuous-variable quantum key distribution (CV-QKD) system. Classical coherent detection is implemented with a simple digital phase noise cancelation scheme. In the proposed system, there is no need for frequency and phase locking between the quantum signals and the local oscillator laser.

View Article and Find Full Text PDF

We experimentally demonstrate and characterize the performance of a 400-Gbit/s orbital angular momentum (OAM) multiplexed free-space optical link over 120 m on the roof of a building. Four OAM beams, each carrying a 100-Gbit/s quadrature-phase-shift-keyed channel are multiplexed and transmitted. We investigate the influence of channel impairments on the received power, intermodal crosstalk among channels, and system power penalties.

View Article and Find Full Text PDF

We present capacity bounds of an optical system that communicates using electromagnetic waves between a transmitter and a receiver. The bounds are investigated in conjunction with a rigorous theory of degrees of freedom (DOF) in the presence of noise. By taking into account the different signal-to-noise ratio (SNR) levels, an optimal number of DOF that provides the maximum capacity is defined.

View Article and Find Full Text PDF

We investigate the sensing of a data-carrying Gaussian beacon on a separate wavelength as a means to provide the information necessary to compensate for the effects of atmospheric turbulence on orbital angular momentum (OAM) and polarization-multiplexed beams in a free-space optical link. The influence of the Gaussian beacon's wavelength on the compensation of the OAM beams at 1560 nm is experimentally studied. It is found that the compensation performance degrades slowly with the increase in the beacon's wavelength offset, in the 1520-1590 nm band, from the OAM beams.

View Article and Find Full Text PDF

While the theory of compressive sensing has been very well investigated in the literature, comparatively little attention has been given to the issues that arise when compressive measurements are made in hardware. For instance, compressive measurements are always corrupted by detector noise. Further, the number of photons available is the same whether a conventional image is sensed or multiple coded measurements are made in the same interval of time.

View Article and Find Full Text PDF

We demonstrate crosstalk mitigation using 4×4 multiple-input-multiple-output (MIMO) equalization on an orbital angular momentum (OAM) multiplexed free-space data link with heterodyne detection. Four multiplexed OAM beams, each carrying a 20  Gbit/s quadrature phase-shift keying signal, propagate through weak turbulence. The turbulence induces inter-channel crosstalk among each beam and degrades the signal performance.

View Article and Find Full Text PDF

We propose an adaptive optics compensation scheme to simultaneously compensate multiple orbital angular momentum (OAM) beams propagating through atmospheric turbulence. A Gaussian beam on one polarization is used to probe the turbulence-induced wavefront distortions and derive the correction pattern for compensating the OAM beams on the orthogonal polarization. By using this scheme, we experimentally demonstrate simultaneous compensation of multiple OAM beams, each carrying a 100  Gbit/s data channel through emulated atmospheric turbulence.

View Article and Find Full Text PDF

We experimentally investigate the performance of an orbital angular momentum (OAM) multiplexed free space optical (FSO) communication link through emulated atmospheric turbulence. The turbulence effects on the crosstalk and system power penalty of the FSO link are characterized. The experimental results show that the power of the transmitted OAM mode will tend to spread uniformly onto the neighboring mode in medium-to-strong turbulence, resulting in severe crosstalk at the receiver.

View Article and Find Full Text PDF

The compressive sensing paradigm exploits the inherent sparsity/compressibility of signals to reduce the number of measurements required for reliable reconstruction/recovery. In many applications additional prior information beyond signal sparsity, such as structure in sparsity, is available, and current efforts are mainly limited to exploiting that information exclusively in the signal reconstruction problem. In this work, we describe an information-theoretic framework that incorporates the additional prior information as well as appropriate measurement constraints in the design of compressive measurements.

View Article and Find Full Text PDF

Compressive imaging systems typically exploit the spatial correlation of the scene to facilitate a lower dimensional measurement relative to a conventional imaging system. In natural time-varying scenes there is a high degree of temporal correlation that may also be exploited to further reduce the number of measurements. In this work we analyze space-time compressive imaging using Karhunen-Loève (KL) projections for the read-noise-limited measurement case.

View Article and Find Full Text PDF

Difference images quantify changes in the object scene over time. In this paper, we use the feature-specific imaging paradigm to present methods for estimating a sequence of difference images from a sequence of compressive measurements of the object scene. Our goal is twofold.

View Article and Find Full Text PDF

The inherent redundancy in natural scenes forms the basis of compressive imaging where the number of measurements is less than the dimensionality of the scene. The compressed sensing theory has shown that a purely random measurement basis can yield good reconstructions of sparse objects with relatively few measurements. However, additional prior knowledge about object statistics that is typically available is not exploited in the design of the random basis.

View Article and Find Full Text PDF

We demonstrate a 5-GHz-broadband tunable slow-light device based on stimulated Brillouin scattering in a standard highly-nonlinear optical fiber pumped by a noise-current-modulated laser beam. The noisemodulation waveform uses an optimized pseudo-random distribution of the laser drive voltage to obtain an optimal flat-topped gain profile, which minimizes the pulse distortion and maximizes pulse delay for a given pump power. In comparison with a previous slow-modulation method, eye-diagram and signal-to-noise ratio (SNR) analysis show that this broadband slow-light technique significantly increases the fidelity of a delayed data sequence, while maintaining the delay performance.

View Article and Find Full Text PDF

Static feature-specific imaging (SFSI), where the measurement basis remains fixed/static during the data measurement process, has been shown to be superior to conventional imaging for reconstruction tasks. Here, we describe an adaptive approach that utilizes past measurements to inform the choice of measurement basis for future measurements in an FSI system, with the goal of maximizing the reconstruction fidelity while employing the fewest measurements. An algorithm to implement this adaptive approach is developed for FSI systems, and the resulting systems are referred to as adaptive FSI (AFSI) systems.

View Article and Find Full Text PDF