Iron and 2-oxoglutarate dependent (Fe/2OG) enzymes exhibit an exceedingly broad reaction repertoire. The most prevalent reactivity is hydroxylation, but many other reactivities have also been discovered in recent years, including halogenation, desaturation, epoxidation, endoperoxidation, epimerization, and cyclization. To fully explore the reaction mechanisms that support such a diverse reactivities in Fe/2OG enzyme, it is necessary to utilize a multi-faceted research methodology, consisting of molecular probe design and synthesis, in vitro enzyme assay development, enzyme kinetics, spectroscopy, protein crystallography, and theoretical calculations.
View Article and Find Full Text PDFNucleic Acids Res
September 2024
The ability to catalyze reversible DNA cleavage and religation is central to topoisomerases' role in regulating DNA topology. In type IIA topoisomerases (Top2), the formation of its DNA cleavage-religation center is driven by DNA-binding-induced structural rearrangements. These changes optimally position key catalytic modules, such as the active site tyrosine of the WHD domain and metal ion(s) chelated by the TOPRIM domain, around the scissile phosphodiester bond to perform reversible transesterification.
View Article and Find Full Text PDFFormation of programmed DNA double-strand breaks is essential for initiating meiotic recombination. Genetic studies on Arabidopsis thaliana and Mus musculus have revealed that assembly of a type IIB topoisomerase VI (Topo VI)-like complex, composed of SPO11 and MTOPVIB, is a prerequisite for generating DNA breaks. However, it remains enigmatic if MTOPVIB resembles its Topo VI subunit B (VIB) ortholog in possessing robust ATPase activity, ability to undergo ATP-dependent dimerization, and activation of SPO11-mediated DNA cleavage.
View Article and Find Full Text PDFNature has developed complexity-generating reactions within natural product biosynthetic pathways. However, direct utilization of these pathways to prepare compound libraries remains challenging due to limited substrate scopes, involvement of multiple-step reactions, and moderate robustness of these sophisticated enzymatic transformations. Synthetic chemistry, on the other hand, offers an alternative approach to prepare natural product analogs.
View Article and Find Full Text PDFThe propagation of the hepatitis C virus (HCV) is regulated in part by the phosphorylation of its nonstructural protein NS5A that undergoes sequential phosphorylation on several highly conserved serine residues and switches from a hypo- to a hyperphosphorylated state. Previous studies have shown that NS5A sequential phosphorylation requires NS3 encoded on the same NS3-NS4A-NS4B-NS5A polyprotein. Subtle mutations in NS3 without affecting its protease activity could affect NS5A phosphorylation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2022
Deoxypodophyllotoxin contains a core of four fused rings (A to D) with three consecutive chiral centers, the last being created by the attachment of a peripheral trimethoxyphenyl ring (E) to ring C. Previous studies have suggested that the iron(II)- and 2-oxoglutarate-dependent (Fe/2OG) oxygenase, deoxypodophyllotoxin synthase (DPS), catalyzes the oxidative coupling of ring B and ring E to form ring C and complete the tetracyclic core. Despite recent efforts to deploy DPS in the preparation of deoxypodophyllotoxin analogs, the mechanism underlying the regio- and stereoselectivity of this cyclization event has not been elucidated.
View Article and Find Full Text PDFPhosphodiesterase 5A1 (PDE5) is a key target for treating cardiovascular diseases and erectile dysfunction. Here, we report the crystal structure of PDE5 complexed with the sole second generation drug avanafil. Analysis of protein-drug interactions revealed the structural basis of avanafil's superior isoform selectivity.
View Article and Find Full Text PDFMechanisms of enzymatic epoxidation via oxygen atom transfer (OAT) to an olefin moiety is mainly derived from the studies on thiolate-heme containing epoxidases, such as cytochrome P450 epoxidases. The molecular basis of epoxidation catalyzed by nonheme-iron enzymes is much less explored. Herein, we present a detailed study on epoxidation catalyzed by the nonheme iron(II)- and 2-oxoglutarate-dependent (Fe/2OG) oxygenase, AsqJ.
View Article and Find Full Text PDFBackground: The Slug-E-cadherin axis plays a critical role in non-small-cell lung cancers (NSCLCs) where aberrant upregulation of Slug promotes cancer metastasis. Now, the post-translational modifications of Slug and their regulation mechanisms still remain unclear in lung cancer. Hence, exploring the protein linkage map of Slug is of great interest for investigating the scenario of how Slug protein is regulated in lung cancer metastasis.
View Article and Find Full Text PDFMany cancer type-specific anticancer agents have been developed and significant advances have been made toward precision medicine in cancer treatment. However, traditional or nonspecific anticancer drugs are still important for the treatment of many cancer patients whose cancers either do not respond to or have developed resistance to cancer-specific anticancer agents. DNA topoisomerases, especially type IIA topoisomerases, are proved therapeutic targets of anticancer and antibacterial drugs.
View Article and Find Full Text PDFAsqJ, an iron(II)- and 2-oxoglutarate-dependent enzyme found in viridicatin-type alkaloid biosynthetic pathways, catalyzes sequential desaturation and epoxidation to produce cyclopenins. Crystal structures of AsqJ bound to cyclopeptin and its C3 epimer are reported. Meanwhile, a detailed mechanistic study was carried out to decipher the desaturation mechanism.
View Article and Find Full Text PDFHuman type II topoisomerase (Top2) isoforms, hTop2α and hTop2β, are targeted by some of the most successful anticancer drugs. These drugs induce Top2-mediated DNA cleavage to trigger cell-death pathways. The potency of these drugs correlates positively with their efficacy in stabilizing the enzyme-mediated DNA breaks.
View Article and Find Full Text PDFThe programmed induction of meiotic DNA double-strand breaks (DSBs) by the evolutionarily conserved SPO-11 protein, which is structurally related to archaeal Topo VIA topoisomerases, triggers meiotic recombination. Identification of several meiosis-specific factors that are required for SPO-11-mediated DSB formation raises the question whether SPO-11 alone can cleave DNA. Here, we have developed procedures to express and purify C.
View Article and Find Full Text PDFMethyltransferases play crucial roles in many cellular processes, and various regulatory mechanisms have evolved to control their activities. For methyltransferases involved in biosynthetic pathways, regulation via feedback inhibition is a commonly employed strategy to prevent excessive accumulation of the pathways' end products. To date, no biosynthetic methyltransferases have been characterized by X-ray crystallography in complex with their corresponding end product.
View Article and Find Full Text PDFTargeting thymidylate kinase (TMPK) that catalyzes the phosphotransfer reaction for formation of dTDP from dTMP is a new strategy for anticancer treatment. This study is to understand the inhibitory mechanism of a previously identified human TMPK (hTMPK) inhibitor YMU1 (1a) by molecular docking, isothermal titration calorimetry, and photoaffinity labeling. The molecular dynamics simulation suggests that 1a prefers binding at the catalytic site of hTMPK, whereas the hTMPK inhibitors that bear pyridino[d]isothiazolone or benzo[d]isothiazolone core structure in lieu of the dimethylpyridine-fused isothiazolone moiety in 1a can have access to both the ATP-binding and catalytic sites.
View Article and Find Full Text PDFSMYD3 methyltransferase is nearly undetectable in normal human tissues but highly expressed in several cancers, including breast cancer, although its contributions to pathogenesis in this setting are unclear. Here we report that histone H2A.Z.
View Article and Find Full Text PDFThe jadomycins are a family of secondary metabolites produced by S. venezuelae ISP5230. Specific jadomycins have been shown to possess a variety of anticancer, antifungal, and antibacterial properties, with different molecular mechanisms of action.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2015
Polyamines are organic polycations essential for cell growth and differentiation; their aberrant accumulation is often associated with diseases, including many types of cancer. To maintain polyamine homeostasis, the catalytic activity and protein abundance of ornithine decarboxylase (ODC), the committed enzyme for polyamine biosynthesis, are reciprocally controlled by the regulatory proteins antizyme isoform 1 (Az1) and antizyme inhibitor (AzIN). Az1 suppresses polyamine production by inhibiting the assembly of the functional ODC homodimer and, most uniquely, by targeting ODC for ubiquitin-independent proteolytic destruction by the 26S proteasome.
View Article and Find Full Text PDFThe mer operon confers bacterial resistance to inorganic mercury (Hg(2+)) and organomercurials by encoding proteins involved in sensing, transport and detoxification of these cytotoxic agents. Expression of the mer operon is under tight control by the dual-function transcriptional regulator MerR. The metal-free, apo MerR binds to the mer operator/promoter region as a repressor to block transcription initiation, but is converted into an activator upon Hg(2+)-binding.
View Article and Find Full Text PDFBiochim Biophys Acta
October 2014
Human cytosolic NADP(+)-dependent malic enzyme (c-NADP-ME) is neither a cooperative nor an allosteric enzyme, whereas mitochondrial NAD(P)(+)-dependent malic enzyme (m-NAD(P)-ME) is allosterically activated by fumarate. This study examines the molecular basis for the different allosteric properties and quaternary structural stability of m-NAD(P)-ME and c-NADP-ME. Multiple residues corresponding to the fumarate-binding site were mutated in human c-NADP-ME to correspond to those found in human m-NAD(P)-ME.
View Article and Find Full Text PDFType II topoisomerases (Top2s) alter DNA topology via the formation of an enzyme-DNA adduct termed cleavage complex, which harbors a transient double-strand break in one DNA to allow the passage of another. Agents targeting human Top2s are clinically active anticancer drugs whose trapping of Top2-mediated DNA breakage effectively induces genome fragmentation and cell death. To understand the structural basis of this drug action, we previously determined the structure of human Top2 β-isoform forming a cleavage complex with the drug etoposide and DNA, and described the insertion of drug into DNA cleavage site and drug-induced decoupling of catalytic groups.
View Article and Find Full Text PDFThe protozoan Giardia lamblia differentiates into infectious cysts within the human intestinal tract for disease transmission. Expression of the cyst wall protein (cwp) genes increases with similar kinetics during encystation. However, little is known how their gene regulation shares common mechanisms.
View Article and Find Full Text PDF