Publications by authors named "Nehemiah Alvarez"

Article Synopsis
  • Benign prostatic hyperplasia (BPH) is a common age-related condition causing severe urinary issues, linked to hormonal imbalances such as elevated estradiol and testosterone levels.
  • Previous research in mice revealed that these hormonal changes lead to increased macrophage accumulation in the prostate, where they transform into foam cells.
  • The current study identified specific macrophage subtypes and their gene expression signatures in response to hormone imbalance, while also finding that a protein called Cxcl17 might encourage macrophages to enter the prostate lumen.
View Article and Find Full Text PDF

Benign prostatic hyperplasia (BPH) is a prevalent age-related condition often characterized by debilitating urinary symptoms. Its etiology is believed to stem from hormonal imbalance, particularly an elevated estradiol-to-testosterone ratio and chronic inflammation. Our previous studies using a mouse steroid hormone imbalance model identified a specific increase in macrophages that migrate and accumulate in the prostate lumen where they differentiate into lipid-laden foam cells in mice implanted with testosterone and estradiol pellets, but not in sham animals.

View Article and Find Full Text PDF

DOT1-like (DOT1L) histone methyltransferase is essential for mammalian erythropoiesis. Loss of DOT1L in knockout (KO) mouse embryos resulted in lethal anemia at midgestational age. The only recognized molecular function of DOT1L is its methylation of histone H3 lysine 79 (H3K79).

View Article and Find Full Text PDF

Immunoglobulin heavy chain (IgH) locus-associated G-rich long noncoding RNA (SμGLT) is important for physiological and pathological B cell DNA recombination. We demonstrate that the METTL3 enzyme-catalyzed N-methyladenosine (mA) RNA modification drives recognition and 3' end processing of SμGLT by the RNA exosome, promoting class switch recombination (CSR) and suppressing chromosomal translocations. The recognition is driven by interaction of the MPP6 adaptor protein with nuclear mA reader YTHDC1.

View Article and Find Full Text PDF

Mammalian oocytes must degrade maternal transcripts through a process called translational mRNA decay, in which maternal mRNA undergoes translational activation, followed by deadenylation and mRNA decay. Once a transcript is translationally activated, it becomes deadenylated by the CCR4-NOT complex. Knockout of CCR4-NOT Transcription Complex Subunit 6 Like (), a deadenylase within the CCR4-NOT complex, results in mRNA decay defects during metaphase I (MI) entry.

View Article and Find Full Text PDF

Mammalian oocytes and eggs are transcriptionally quiescent and depend on post-transcriptional mechanisms for proper maturation. Post-transcriptional mRNA modifications comprise an important regulatory mechanism that can alter protein and miRNA recognition sites, splicing, stability, secondary structure, and protein coding. We discovered that fully grown mouse germinal vesicle oocytes and metaphase II eggs display abundant inosine mRNA modifications compared to growing oocytes from postnatal day 12 oocytes.

View Article and Find Full Text PDF

Basal-like breast cancers are an aggressive breast cancer subtype, which often lack estrogen receptor, progesterone receptor, and Her2 expression, and are resistant to antihormonal and targeted therapy, resulting in few treatment options. Understanding the underlying mechanisms that regulate progression of basal-like breast cancers would lead to new therapeutic targets and improved treatment strategies. Breast cancer progression is characterized by inflammatory responses, regulated in part by chemokines.

View Article and Find Full Text PDF

Background: The major form of autosomal dominant polycystic kidney disease is caused by heterozygous mutations in , the gene that encodes polycystin-1 (PC1). Unlike genes in the mouse and most other mammals, human is unusual in that it contains two long polypyrimidine tracts in introns 21 and 22 (2.5 kbp and 602 bp, respectively; 97% cytosine and thymine).

View Article and Find Full Text PDF

Ductal carcinoma (DCIS) is the most common form of breast cancer, with 50,000 cases diagnosed every year in the United States. Overtreatment and undertreatment remain significant clinical challenges in patient care. Identifying key mechanisms associated with DCIS progression could uncover new biomarkers to better predict patient prognosis and improve guided treatment.

View Article and Find Full Text PDF

Objective: Ovarian carcinomas that originate from fallopian epithelial cells are suggested to arise due to repeated exposure to ovulatory follicular fluid (FF). Mechanistic explanation(s) for how this occurs are unknown. Here, we sought to understand if FF exposure to fallopian epithelial cells could induce DNA damage and expression of a known family of DNA mutators, apolipoprotein B mRNA editing enzyme, catalytic polypeptide (APOBEC) cytidine deaminases.

View Article and Find Full Text PDF

Alternative splicing of precursor mRNA (pre-mRNA) is a strategy employed by most eukaryotes to increase transcript and proteomic diversity. Many metazoan splicing factors are members of multigene families, with each member having different functions. How these highly related proteins evolve unique properties has been unclear.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: