Publications by authors named "Neha V Hulyalkar"

Recurrent urinary tract infections (rUTIs) are a major clinical challenge in postmenopausal women and their increasing prevalence underscores the need to define interactions between the host and the urinary microbiome that may underlie rUTI susceptibility. A body of work has identified the taxonomic profile of the female urinary microbiome associate with aging, menopause, and urinay disease. However, how this microbial community engages with the host niche, including the local biochemical environment of the urogenital tract, in health and disease is yet to be fully defined.

View Article and Find Full Text PDF
Article Synopsis
  • * The rising issue of antimicrobial resistance emphasizes the need for new therapeutic targets, making it crucial to understand how pathogens like a specific bacterium associated with UTIs survive in the urinary tract.
  • * This study involved creating high-quality genomic data of bacteria isolated from postmenopausal women's urine to analyze genetic factors that may contribute to their survival in the urinary tract.
View Article and Find Full Text PDF

is an understudied member of its genus possessing a characteristic megaplasmid contributing to a large genome size. Although less commonly associated with human infection compared to other enterococci, this species can cause disease and persist in diverse niches such as the gut, urinary tract, blood and environment. Few complete genome assemblies have been published to date for .

View Article and Find Full Text PDF

Unlabelled: is the leading Gram-positive bacterial species implicated in urinary tract infection (UTI). An opportunistic pathogen, is a commensal of the human gastrointestinal tract (GIT) and its presence in the GIT is a predisposing factor for UTI. The mechanisms by which colonizes and survives in the urinary tract (UT) are poorly understood, especially in uncomplicated or recurrent UTI.

View Article and Find Full Text PDF

Glycosaminoglycans (GAGs) are linear, negatively charged polysaccharides composed of repeating disaccharide units of uronic acid and amino sugars. The luminal surface of the bladder epithelium is coated with a GAG layer. These urothelial GAGs are thought to provide a protective barrier and serve as a potential interaction site with the urinary microbiome (urobiome).

View Article and Find Full Text PDF

Glycosaminoglycans (GAGs) are linear, negatively charged polysaccharides composed of repeating disaccharide units of uronic acid and amino sugars. The luminal surface of the bladder epithelium is coated with a GAG layer. These urothelial GAGs are thought to provide a protective barrier and serve as a potential interaction site with the urinary microbiome (urobiome).

View Article and Find Full Text PDF

Postmenopausal women are severely affected by recurrent urinary tract infection (rUTI). The urogenital microbiome is a key component of the urinary environment. However, changes in the urogenital microbiome underlying rUTI susceptibility are unknown.

View Article and Find Full Text PDF

Glycosaminoglycans (GAGs) are linear polysaccharides and are among the primary components of mucosal surfaces in mammalian systems. The GAG layer lining the mucosal surface of the urinary tract is thought to play a critical role in urinary tract homeostasis and provide a barrier against urinary tract infection (UTI). This key component of the host-microbe interface may serve as a scaffolding site or a nutrient source for the urinary microbiota or invading pathogens, but its exact role in UTI pathogenesis is unclear.

View Article and Find Full Text PDF

Lactobacillus crispatus frequently colonizes the vagina and bladder of healthy women. Although its association with vaginal health is relatively well understood, little is known about its role in urinary tract infection (UTI). Here, we report the complete genome sequences of three urinary L.

View Article and Find Full Text PDF

Complete genome sequences provide valuable data for the understanding of genetic diversity and unique colonization factors of urinary microbes. These data may include mobile genetic elements, such as plasmids and extrachromosomal phage, that contribute to the dissemination of antimicrobial resistance and further complicate treatment of urinary tract infection (UTI). In addition to providing fine resolution of genome structure, complete, closed genomes allow for the detailed comparative genomics and evolutionary analyses.

View Article and Find Full Text PDF

Uropathogenic (UPEC) is the most common cause of urinary tract infection (UTI). This disease disproportionately affects women and frequently develops into recurrent UTI (rUTI) in postmenopausal women. Here, we report the complete genome sequences of seven UPEC isolates obtained from the urine of postmenopausal women with rUTI.

View Article and Find Full Text PDF

Recent advances in the analysis of microbial communities colonizing the human body have identified a resident microbial community in the human urinary tract (UT). Compared to many other microbial niches, the human UT harbors a relatively low biomass. Studies have identified many genera and species that may constitute a core urinary microbiome.

View Article and Find Full Text PDF

Dengue has emerged as a major mosquito-borne disease in the tropics and subtropics. In severe dengue, enhanced microvascular endothelial permeability leads to plasma leakage. Direct dengue virus (DENV) infection in human microvascular endothelial cells (HMEC-1) can enhance trans-endothelial leakage.

View Article and Find Full Text PDF

Chikungunya virus (CHIKV), a positive-stranded RNA virus, can cause neurological complications by infecting the major parenchymal cells of the brain such as neurons and astrocytes. A proteomic analysis of CHIKV-infected human astrocytic cell line U-87 MG revealed tight functional associations among the modulated proteins. The predominant cellular pathways involved were of transcription-translation machinery, cytoskeletol reorganization, apoptosis, ubiquitination, and metabolism.

View Article and Find Full Text PDF