Objective: Targeted transcutaneous electrical nerve stimulation (tTENS) is a non-invasive neural stimulation technique that involves activating sensory nerve fibers to elicit tactile sensations in a distal, or referred, location. Though tTENS is a promising approach for delivering haptic feedback in virtual reality or for use by those with somatosensory deficits, it was not known how the perception of tTENS might be influenced by changing wrist position during sensorimotor tasks.
Approach: We worked with 12 able-bodied individuals and delivered tTENS by placing electrodes on the wrist, thus targeting the ulnar, median, and radial nerves, and eliciting tactile sensations in the hand.
BMC Med Educ
August 2024
Background: The authors had previously developed AnaVu, a low-resource 3D visualization tool for stereoscopic/monoscopic projection of 3D models generated from pre-segmented MRI neuroimaging data. However, its utility in neuroanatomical education compared to conventional methods (specifically whether the stereoscopic or monoscopic mode is more effective) is still unclear.
Methods: A three-limb randomized controlled trial was designed.
Clinical myoelectric prostheses lack the sensory feedback and sufficient dexterity required to complete activities of daily living efficiently and accurately. Providing haptic feedback of relevant environmental cues to the user or imbuing the prosthesis with autonomous control authority have been separately shown to improve prosthesis utility. Few studies, however, have investigated the effect of combining these two approaches in a shared control paradigm, and none have evaluated such an approach from the perspective of neural efficiency (the relationship between task performance and mental effort measured directly from the brain).
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
April 2023
Individuals who use myoelectric upper-limb prostheses often rely heavily on vision to complete their daily activities. They thus struggle in situations where vision is overloaded, such as multitasking, or unavailable, such as poor lighting conditions. Non-disabled individuals can easily accomplish such tasks due to tactile reflexes and haptic sensation guiding their upper-limb motor coordination.
View Article and Find Full Text PDFBackground: Despite the technological advancements in myoelectric prostheses, body-powered prostheses remain a popular choice for amputees, in part due to the natural sensory advantage they provide. Research on haptic feedback in myoelectric prostheses has delivered mixed results. Furthermore, there is limited research comparing various haptic feedback modalities in myoelectric prostheses.
View Article and Find Full Text PDF