Turk J Pharm Sci
May 2024
The use of organic-inorganic hybrid nanoflowers as a support material for enzyme immobilization has gained significant attention in recent years due to their high stability, ease of preparation, and enhanced catalytic activity. However, a major challenge in utilizing these hybrid nanoflowers for enzyme immobilization is the difficulty in handling and separating them due to their low density and high dispersion. To address this issue, magnetic nanoflowers have emerged as a promising alternative enzyme immobilization platform due to their easy separation, structural stability, and ability to enhance catalytic efficiency.
View Article and Find Full Text PDFWith a growing interest in precise and sensitive diagnosis for criminal investigations, nanoparticles (NPs) have intrigued scientific minds working in the field of forensic science due to their exceptional properties. Magnetic nanoparticles (MNPs) have emerged as a powerful tool for improving forensic analysis due to their super magnetic behavior combined with smaller dimensions. MNP-based applications can benefit criminologists to solve criminal mysteries with greater precision and pace.
View Article and Find Full Text PDF