Publications by authors named "Neha Nandwani"

In cardiac muscle, many myosin molecules are in a resting or "OFF" state with their catalytic heads in a folded structure known as the interacting heads motif (IHM). Many mutations in the human β-cardiac myosin gene that cause hypertrophic cardiomyopathy (HCM) are thought to destabilize (decrease the population of) the IHM state. The effects of pathogenic mutations on the IHM structural state are often studied using indirect assays, including a single-ATP turnover assay that detects the super-relaxed (SRX) biochemical state of myosin functionally.

View Article and Find Full Text PDF

Human β-cardiac myosin exists in an ON-state where both myosin heads are accessible for interaction with actin, and an OFF-state where the heads are folded back onto their own coiled-coil tail, interacting with each other via an interacting-heads motif (IHM). Hypertrophic cardiomyopathy (HCM) mutations in β-cardiac myosin cause hypercontractility of the heart. Nine years ago, a unifying hypothesis proposed that hypercontractility caused by myosin HCM-associated mutations is primarily due to an increase in the number of ON-state myosin molecules, rather than altered fundamental alterations of functional myosin parameters such as intrinsic motor force, its velocity of movement along actin, or its ATPase turnover rate, all of which impact power output.

View Article and Find Full Text PDF

At the molecular level, clinical hypercontractility associated with many hypertrophic cardiomyopathy (HCM)-causing mutations in beta-cardiac myosin appears to be driven by their disruptive effect on the energy-conserving, folded-back, super relaxed (SRX) OFF-state of myosin. A pathological increase in force production results from release of heads from this OFF-state, which results in an increase in the number of heads free to interact with actin and produce force. Pathogenic mutations in myosin can conceivably disrupt the OFF-state by (1) directly affecting the intramolecular interfaces stabilizing the folded-back state, or (2) allosterically destabilizing the folded-back state via disruption of diverse conformational states of the myosin motor along its chemomechanical cycle.

View Article and Find Full Text PDF

To save energy and precisely regulate cardiac contractility, cardiac muscle myosin heads are sequestered in an 'off' state that can be converted to an 'on' state when exertion is increased. The 'off' state is equated with a folded-back structure known as the interacting-heads motif (IHM), which is a regulatory feature of all class-2 muscle and non-muscle myosins. We report here the human β-cardiac myosin IHM structure determined by cryo-electron microscopy to 3.

View Article and Find Full Text PDF

During normal levels of exertion, many cardiac muscle myosin heads are sequestered in an off-state even during systolic contraction to save energy and for precise regulation. They can be converted to an on-state when exertion is increased. Hypercontractility caused by hypertrophic cardiomyopathy (HCM) myosin mutations is often the result of shifting the equilibrium toward more heads in the on-state.

View Article and Find Full Text PDF

Hypertrophic cardiomyopathy (HCM) is a disease of the myocardium caused by mutations in sarcomeric proteins with mechanical roles, such as the molecular motor myosin. Around half of the HCM-causing genetic variants target contraction modulator cardiac myosin-binding protein C (cMyBP-C), although the underlying pathogenic mechanisms remain unclear since many of these mutations cause no alterations in protein structure and stability. As an alternative pathomechanism, here we have examined whether pathogenic mutations perturb the nanomechanics of cMyBP-C, which would compromise its modulatory mechanical tethers across sliding actomyosin filaments.

View Article and Find Full Text PDF

Domain swapping is the process by which identical monomeric proteins exchange structural elements to generate dimers/oligomers. Although engineered domain swapping is a compelling strategy for protein assembly, its application has been limited due to the lack of simple and reliable design approaches. Here, we demonstrate that the hydrophobic five-residue 'cystatin motif' (QVVAG) from the domain-swapping protein Stefin B, when engineered into a solvent-exposed, tight surface loop between two β-strands prevents the loop from folding back upon itself, and drives domain swapping in non-domain-swapping proteins.

View Article and Find Full Text PDF

Rational engineering of a protein to enable domain swapping requires an understanding of the sequence, structural and energetic factors that favor the domain-swapped oligomer over the monomer. While it is known that the deletion of loops between β-strands can promote domain swapping, the spliced sequence at the position of the loop deletion is thought to have a minimal role to play in such domain swapping. Here, two loop-deletion mutants of the non-domain-swapping protein monellin, frame-shifted by a single residue, were designed.

View Article and Find Full Text PDF

Casitas B-cell lymphoma (Cbl)-family E3 ubiquitin ligases are negative regulators of tyrosine kinase signaling. Recent work has revealed a critical role of Cbl in the maintenance of hematopoietic stem cell (HSC) homeostasis, and mutations in CBL have been identified in myeloid malignancies. Here we show that, in contrast to Cbl or Cbl-b single-deficient mice, concurrent loss of Cbl and Cbl-b in the HSC compartment leads to an early-onset lethal myeloproliferative disease in mice.

View Article and Find Full Text PDF

Viruses of the Paramyxoviridae family bind to their host cells by using hemagglutinin-neuraminidase (HN), which enhances fusion protein (F)-mediated membrane fusion. Although respiratory syncytial virus and parainfluenza virus 5 of this family are suggested to trigger host cell signaling during infection, the virus-induced intracellular signals dictating virus-cell fusion await elucidation. Using an F- or HN-F-containing reconstituted envelope of Sendai virus, another paramyxovirus, we revealed the role and regulation of AKT1 and Raf/MEK/ERK cascades during viral fusion with liver cells.

View Article and Find Full Text PDF