Publications by authors named "Neha Manohar"

Understanding the dynamics of polymers in confined environments is pivotal for diverse applications ranging from polymer upcycling to bioseparations. In this study, we develop an entropic barrier model using self-consistent field theory that considers the effect of attractive surface interactions, solvation, and confinement on polymer kinetics. In this model, we consider the translocation of a polymer from one cavity into a second cavity through a single-segment-width nanopore.

View Article and Find Full Text PDF

Understanding protein-protein interactions and formation of reversible oligomers (clusters) in concentrated monoclonal antibody (mAb) solutions is necessary for designing stable, low viscosity (η) concentrated formulations for processing and subcutaneous injection. Here we characterize the strength () of short-range anisotropic attractions (SRA) for 75-200 mg/mL mAb2 solutions at different pH and cosolute conditions by analyzing structure factors (()) from small-angle X-ray scattering (SAXS) using coarse-grained molecular dynamics simulations. Best fit simulations additionally provide cluster size distributions, fractal dimensions, cluster occluded volume, and mAb coordination numbers.

View Article and Find Full Text PDF

The effects of a subclass of monoclonal antibodies (mAbs) on protein-protein interactions, formation of reversible oligomers (clusters), and viscosity (η) are not well understood at high concentrations. Herein, we quantify a short-range anisotropic attraction between the complementarity-determining region (CDR) and CH3 domains (K) for vedolizumab IgG1, IgG2, or IgG4 subclasses by fitting small-angle X-ray scattering (SAXS) structure factor () data with an extensive library of 12-bead coarse-grained (CG) molecular dynamics simulations. The K bead attraction strength was isolated from the strength of long-range electrostatic repulsion for the full mAb, which was determined from the theoretical net charge and a scaling parameter ψ to account for solvent accessibility and ion pairing.

View Article and Find Full Text PDF

Attractive protein-protein interactions in concentrated monoclonal antibody (mAb) solutions may lead to the formation of clusters that increase viscosity. Here, we propose an analytical model that relates mAb solution viscosity to clustering by accounting for the contributions of suboptimal mAb packing within a cluster and cluster fractal dimension. The influence of short-range, anisotropic attractions and long-range Coulombic repulsion on cluster properties is investigated by analyzing the cluster-size distributions, cluster fractal dimensions, radial distribution functions, and static structure factors from a library of coarse-grained molecular dynamics simulations.

View Article and Find Full Text PDF

Interfacial evaporation using porous hydrogels has demonstrated highly effective solar evaporation performance under natural sunlight to ensure an affordable clean water supply. However, it remains challenging to realize scalable and ready-to-use hydrogel materials with durable mechanical properties. Here, self-assembled templating (SAT) is developed as a simple yet effective method to fabricate large-scale elastic hydrogel evaporators with excellent desalination performance.

View Article and Find Full Text PDF

Polymer-infiltrated nanoparticle films (PINFs) are a new class of nanocomposites that offer synergistic properties and functionality derived from unusually high fractions of nanomaterials. Recently, two versatile techniques,capillary rise infiltration (CaRI) and solvent-driven infiltration of polymer (SIP), have been introduced that exploit capillary forces in films of densely packed nanoparticles. In CaRI, a highly loaded PINF is produced by thermally induced wicking of polymer melt into the nanoparticle packing pores.

View Article and Find Full Text PDF

Despite their wide potential utility, the manufacture of polymer-nanoparticle (NP) composites with high filler fractions presents significant challenges because of difficulties associated with dispersing and mixing high volume fractions of NPs in polymer matrices. Polymer-infiltrated nanoparticle films (PINFs) circumvent these issues, allowing fabrication of functional composites with extremely high filler fractions (>50 vol %). In this work, we present a one-step, room-temperature method for porous PINF fabrication through solvent-driven infiltration of polymer (SIP) into NP packings from a bilayer film composed of a densely packed layer of NPs atop a polymer film.

View Article and Find Full Text PDF

Understanding phase transitions of fluids confined within nanopores is important for a wide variety of technological applications. It is well known that fluids confined in nanopores typically demonstrate freezing-point depressions, ΔTf, described by the Gibbs-Thomson (GT) equation. Herein, we highlight and correct several thermodynamic inconsistencies in the conventional use of the GT equation, including the fact that the enthalpy of melting, ΔHm, and the solid-liquid surface energy, γ(SL), are functions of pore diameter, complicating their prediction.

View Article and Find Full Text PDF

Nanofibers of polyaniline and oligoanilines of controlled molecular weight, e.g., tetraaniline, octaaniline, and hexadecaaniline, are synthesized using a versatile high ionic strength aqueous system that permits the use of H(2)O(2) with no added catalysts as a mild oxidizing agent.

View Article and Find Full Text PDF