Background: Cetuximab, an anti-EGFR monoclonal antibody, is used to treat several cancers. However, many patients who initially respond to cetuximab acquire resistance. To examine mechanisms of acquired resistance, we developed a series of cetuximab-resistant (Ctx(R)) clones derived from the cetuximab sensitive (CtxS) non-small cell lung cancer (NSCLC) cell line H226.
View Article and Find Full Text PDFThe EGFR antibody cetuximab is used to treat numerous cancers, but intrinsic and acquired resistance to this agent is a common clinical outcome. In this study, we show that overexpression of the oncogenic receptor tyrosine kinase AXL is sufficient to mediate acquired resistance to cetuximab in models of non-small cell lung cancer (NSCLC) and head and neck squamous cell carcinoma (HNSCC), where AXL was overexpressed, activated, and tightly associated with EGFR expression in cells resistant to cetuximab (Ctx(R) cells). Using RNAi methods and novel AXL-targeting agents, we found that AXL activation stimulated cell proliferation, EGFR activation, and MAPK signaling in Ctx(R) cells.
View Article and Find Full Text PDFTriple-negative breast cancer (TNBC) is a subclass of breast cancers (i.e., estrogen receptor-negative, progesterone receptor-negative, and HER2-negative) that have poor prognosis and very few identified molecular targets.
View Article and Find Full Text PDFThe epidermal growth factor receptor (EGFR) is a central regulator of tumor progression in a variety of human cancers. Cetuximab is an anti-EGFR monoclonal antibody that has been approved for head and neck and colorectal cancer treatment, but many patients treated with cetuximab don't respond or eventually acquire resistance. To determine how tumor cells acquire resistance to cetuximab, we previously developed a model of acquired resistance using the non-small cell lung cancer line NCI-H226.
View Article and Find Full Text PDFNuclear localized HER family receptor tyrosine kinases (RTKs) have been observed in primary tumor specimens and cancer cell lines for nearly two decades. Inside the nucleus, HER family members (EGFR, HER2, and HER3) have been shown to function as co-transcriptional activators for various cancer-promoting genes. However, the regions of each receptor that confer transcriptional potential remain poorly defined.
View Article and Find Full Text PDFThe epidermal growth factor receptor (EGFR) has been one of the most targeted receptors in the field of oncology. While anti-EGFR inhibitors have demonstrated clinical success in specific cancers, most patients demonstrate either intrinsic or acquired resistance within one year of treatment. Many mechanisms of resistance to EGFR inhibitors have been identified, one of these being attributed to alternatively localized EGFR from the cell membrane into the cell's nucleus.
View Article and Find Full Text PDFThe epidermal growth factor receptor (EGFR) is a central regulator of tumor progression in human cancers. Cetuximab is an anti-EGFR monoclonal antibody that has been approved for use in oncology. Despite clinical success the majority of patients do not respond to cetuximab and those who initially respond frequently acquire resistance.
View Article and Find Full Text PDF