Publications by authors named "Neha Kamat"

Ion channels are biological transistors that control ionic flux across cell membranes to regulate electrical transmission and signal transduction. They are found in all biological membranes and their conductive state kinetics are frequently disrupted in human diseases. Organelle ion channels are among the most resistant to functional and pharmacological interrogation.

View Article and Find Full Text PDF

Naturally generated lipid nanoparticles termed extracellular vesicles (EVs) hold significant promise as engineerable therapeutic delivery vehicles. However, active loading of protein cargo into EVs in a manner that is useful for delivery remains a challenge. Here, we demonstrate that by rationally designing proteins to traffic to the plasma membrane and associate with lipid rafts, we can enhance loading of protein cargo into EVs for a set of structurally diverse transmembrane and peripheral membrane proteins.

View Article and Find Full Text PDF

Synthetic biology allows us to reuse, repurpose, and reconfigure biological systems to address society's most pressing challenges. Developing biotechnologies in this way requires integrating concepts across disciplines, posing challenges to educating students with diverse expertise. We created a framework for synthetic biology training that deconstructs biotechnologies across scales-molecular, circuit/network, cell/cell-free systems, biological communities, and societal-giving students a holistic toolkit to integrate cross-disciplinary concepts towards responsible innovation of successful biotechnologies.

View Article and Find Full Text PDF

In this study, we demonstrate the fabrication of polymersomes, protein-blended polymersomes, and polymeric microcapsules using droplet microfluidics. Polymersomes with uniform, single bilayers and controlled diameters are assembled from water-in-oil-in-water double-emulsion droplets. This technique relies on adjusting the interfacial energies of the droplet to completely separate the polymer-stabilized inner core from the oil shell.

View Article and Find Full Text PDF

Ion channels are biological transistors that control ionic flux across cell membranes to regulate electrical transmission and signal transduction. They are found in all biological membranes and their conductive state kinetics are frequently disrupted in human diseases. Organelle ion channels are among the most resistant to functional and pharmacological interrogation.

View Article and Find Full Text PDF

The organization of membrane proteins between and within membrane-bound compartments is critical to cellular function. Yet we lack approaches to regulate this organization in a range of membrane-based materials, such as engineered cells, exosomes, and liposomes. Uncovering and leveraging biophysical drivers of membrane protein organization to design membrane systems could greatly enhance the functionality of these materials.

View Article and Find Full Text PDF

Cell-free gene expression (CFE) systems are powerful tools for transcribing and translating genes outside of a living cell. Synthesis of membrane proteins is of particular interest, but their yield in CFE is substantially lower than that for soluble proteins. In this paper, we study the CFE of membrane proteins and develop a quantitative kinetic model.

View Article and Find Full Text PDF

Cells use signal transduction across their membranes to sense and respond to a wide array of chemical and physical signals. Creating synthetic systems which can harness cellular signaling modalities promises to provide a powerful platform for biosensing and therapeutic applications. As a first step toward this goal, we investigated how bacterial two-component systems (TCSs) can be leveraged to enable transmembrane-signaling with synthetic membranes.

View Article and Find Full Text PDF

The surface modification of membrane-based nanoparticles, such as liposomes, polymersomes, and lipid nanoparticles, with targeting molecules, such as binding proteins, is an important step in the design of therapeutic materials. However, this modification can be costly and time-consuming, requiring cellular hosts for protein expression and lengthy purification and conjugation steps to attach proteins to the surface of nanocarriers, which ultimately limits the development of effective protein-conjugated nanocarriers. Here, the use of cell-free protein synthesis systems to rapidly create protein-conjugated membrane-based nanocarriers is demonstrated.

View Article and Find Full Text PDF

The addition of both cell-targeting moieties and polyethylene glycol (PEG) to nanoparticle (NP) drug delivery systems is a standard approach to improve the biodistribution, specificity, and uptake of therapeutic cargo. The spatial presentation of these molecules affects avidity of the NP to target cells in part through an interplay between the local ligand concentration and the steric hindrance imposed by PEG molecules. Here, we show that lipid phase separation in nanoparticles can modulate liposome avidity by changing the proximity of PEG and targeting protein molecules on a nanoparticle surface.

View Article and Find Full Text PDF

Assembling transmembrane proteins on organic electronic materials is one promising approach to couple biological functions to electrical readouts. A biosensing device produced in such a way would enable both the monitoring and regulation of physiological processes and the development of new analytical tools to identify drug targets and new protein functionalities. While transmembrane proteins can be interfaced with bioelectronics through supported lipid bilayers (SLBs), incorporating functional and oriented transmembrane proteins into these structures remains challenging.

View Article and Find Full Text PDF

Morsut et al. reported a synthetic receptor system, based on the natural Notch receptor, with customizable input and output functions. Their work on advanced receptor design expands the reach of synthetic receptor systems.

View Article and Find Full Text PDF

Vaccines are vital for protection against existing and emergent diseases. Current vaccine production strategies are limited by long production times, risky viral material, weak immunogenicity, and poor stability, ultimately restricting the safe or rapid production of vaccines for widespread utilization. Cell-free protein synthesis (CFPS) systems, which use extracted transcriptional and translational machinery from cells, are promising tools for vaccine production because they can rapidly produce proteins without the constraints of living cells, have a highly optimizable open system, and can be used for on-demand biomanufacturing.

View Article and Find Full Text PDF

Cell-free systems have enabled the development of genetically encoded biosensors to detect a range of environmental and biological targets. Encapsulation of these systems in synthetic membranes to form artificial cells can reintroduce features of the cellular membrane, including molecular containment and selective permeability, to modulate cell-free sensing capabilities. Here, we demonstrate robust and tunable performance of a transcriptionally regulated, cell-free riboswitch encapsulated in lipid membranes, allowing the detection of fluoride, an environmentally important molecule.

View Article and Find Full Text PDF

Hybrid membranes assembled from biological lipids and synthetic polymers are a promising scaffold for the reconstitution and utilization of membrane proteins. Recent observations indicate that inclusion of small fractions of polymer in lipid membranes can improve protein folding and function, but the exact structural and physical changes a given polymer sequence imparts on a membrane often remain unclear. Here, we use all-atom molecular dynamics simulations to study the structure of hybrid membranes assembled from DOPC phospholipids and PEO--PBD diblock copolymers.

View Article and Find Full Text PDF

The ability of pathogens to develop drug resistance is a global health challenge. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presents an urgent need wherein several variants of concern resist neutralization by monoclonal antibody (mAb) therapies and vaccine-induced sera. Decoy nanoparticles-cell-mimicking particles that bind and inhibit virions-are an emerging class of therapeutics that may overcome such drug resistance challenges.

View Article and Find Full Text PDF

Ligand spatial presentation and density play important roles in signaling pathways mediated by cell receptors and are critical parameters when designing protein-conjugated therapeutic nanoparticles. Here, we harness lipid phase separation to spatially control the protein presentation on lipid vesicles. We use this system to improve the cytotoxicity of TNF-related apoptosis inducing ligand (TRAIL), a therapeutic anticancer protein.

View Article and Find Full Text PDF
Article Synopsis
  • Supported lipid bilayers (SLBs) show potential for use in analytical tools, but integrating transmembrane proteins into them has been challenging.
  • Researchers developed a method using a cell-free expression system to insert membrane proteins into hybrid-supported lipid bilayers (HSLBs) made of phospholipids and diblock copolymers.
  • The study successfully demonstrated two methods of integrating a model protein into HSLBs, enhancing protein mobility and laying the groundwork for various biotechnological applications such as biosensing and drug screening.
View Article and Find Full Text PDF

Hybrid membranes comprised of diblock copolymers, and phospholipids have gained interest due to their unique properties that result from blending natural and synthetic components. The integration of membrane proteins into these synthetic membranes is an important step towards creating biomembrane systems for uses such as artificial cellular systems, biosensors, and drug delivery vehicles. Here, we outline a technique to create hybrid membranes composed of phospholipids and diblock copolymers.

View Article and Find Full Text PDF

The ability of pathogens to develop drug resistance is a global health challenge. The SARS-CoV-2 virus presents an urgent need wherein several variants of concern resist neutralization by monoclonal antibody therapies and vaccine-induced sera. Decoy nanoparticles-cell-mimicking particles that bind and inhibit virions-are an emerging class of therapeutics that may overcome such drug resistance challenges.

View Article and Find Full Text PDF

Introduction: The design of sensors that can detect biological ions remains challenging. While many fluorescent indicators exist that can provide a fast, easy readout, they are often nonspecific, particularly to ions with similar charge states. To address this issue, we developed a vesicle-based sensor that harnesses membrane channels to gate access of potassium (K) ions to an encapsulated fluorescent indicator.

View Article and Find Full Text PDF

Cell-free gene expression (CFE) systems from crude cellular extracts have attracted much attention for biomanufacturing and synthetic biology. However, activating membrane-dependent functionality of cell-derived vesicles in bacterial CFE systems has been limited. Here, we address this limitation by characterizing native membrane vesicles in Escherichia coli-based CFE extracts and describing methods to enrich vesicles with heterologous, membrane-bound machinery.

View Article and Find Full Text PDF