is a halophytic pantropical invasive fern growing in mangroves and swamps. Its association with arbuscular mycorrhizal fungi (AMF) has been reported in Asia. AMF and their symbiosis (AM) commonly colonise the absorption organs of terrestrial plants worldwide.
View Article and Find Full Text PDFRAD52 is a structurally and functionally conserved component of the DNA double-strand break (DSB) repair apparatus from budding yeast to humans. We recently showed that expressing the human gene, in mutant budding yeast cells can suppress both their ionizing radiation (IR) sensitivity and homologous recombination repair (HRR) defects. Intriguingly, we observed that supports DSB repair by a mechanism of HRR that conserves genome structure and is independent of the canonical HR machinery.
View Article and Find Full Text PDFLiving organisms encounter various perturbations, and response mechanisms to such perturbations are vital for species survival. Defective stress responses are implicated in many human diseases including cancer and neurodegenerative disorders. Phenol derivatives, naturally occurring and synthetic, display beneficial as well as detrimental effects.
View Article and Find Full Text PDFThe Andean Puna is an arid, high-elevation plateau in which plants such as grasses experience high abiotic stress and distinctive environmental conditions. We assessed colonization by arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSE) in the roots of 20 native grass species and examined the relationship between root-associated fungi (AMF and DSE) as a function of the elevation of study sites, the photosynthetic pathways of the grass hosts, and the hosts' life cycles. In general, grasses were co-colonized by AMF and DSE and the colonization by AMF and DSE was not extensive.
View Article and Find Full Text PDFPhenolic compounds and their derivatives are ubiquitous constituents of numerous synthetic and natural chemicals that exist in the environment. Their toxicity is mostly attributed to their hydrophobicity and/or the formation of free radicals. In a continuation of the study of phenolic toxicity in a systematic manner, we have examined the biological responses of to a series of mostly monosubstituted phenols utilizing a quantitative structure-activity relationship (QSAR) approach.
View Article and Find Full Text PDFRAD52 is a homologous recombination (HR) protein that is conserved from bacteriophage to humans. Simultaneously attenuating expression of both the RAD52 gene, and the HR and tumor suppressor gene, BRCA2, in human cells synergistically reduces HR - indicating that RAD52 and BRCA2 control independent mechanisms of HR. We have expressed the human RAD52 gene (HsRAD52) in budding yeast strains lacking the endogenous RAD52 gene and found that HsRAD52 supports repair of DNA double-strand breaks (DSB) by a mechanism of HR that conserves genome structure.
View Article and Find Full Text PDFBackground And Aims: Poa subgenus Poa supersect. Homalopoa has diversified extensively in the Americas. Over half of the species in the supersection are diclinous; most of these are from the New World, while a few are from South-East Asia.
View Article and Find Full Text PDFThe relationships of altitude, host life cycle (annual or perennial) and photosynthetic pathway (C(3) or C(4) ) with arbuscular mycorrhiza (AM) root colonization were analysed in 35 species of Andean grasses. The study area is located in north-western Argentina along altitudinal sites within the Puna biogeographical region. Twenty-one sites from 3320 to 4314 m were sampled.
View Article and Find Full Text PDFAlstroemeria L. (Alstroemeriaceae) is an American genus of monocots with two principal distribution centers in Chile and Brazil. In Chile, it is represented by about 32 species, most of them in central Chile, an area known for its high level of endemism.
View Article and Find Full Text PDFThe methionine salvage pathway is responsible for regenerating methionine from its derivative, methylthioadenosine. The complete set of enzymes of the methionine pathway has been previously described in bacteria. Despite its importance, the pathway has only been fully described in one eukaryotic organism, yeast.
View Article and Find Full Text PDFPhylogeny reconstruction is challenging when branch lengths vary and when different genetic loci show conflicting signals. The number of DNA sequence characters required to obtain robust support for all the nodes in a phylogeny becomes greater with denser taxon sampling. We test the usefulness of an approach mixing densely sampled, variable non-coding sequences (trnL-F; rpl16; atpB-rbcL; ITS) with sparsely sampled, more conservative protein coding and ribosomal sequences (matK; ndhF; rbcL; 26S), for the grass subfamily Danthonioideae.
View Article and Find Full Text PDFSaccharomyces cerevisiae mutants lacking the structure-specific nuclease Rad27 display an enhancement in recombination that increases as sequence length decreases, suggesting that Rad27 preferentially restricts recombination between short sequences. Since wild-type alleles of both RAD27 and its human homologue FEN1 complement the elevated short-sequence recombination (SSR) phenotype of a rad27-null mutant, this function may be conserved from yeast to humans. Furthermore, mutant Rad27 and FEN-1 enzymes with partial flap endonuclease activity but without nick-specific exonuclease activity partially complement the SSR phenotype of the rad27-null mutant.
View Article and Find Full Text PDFMaintaining genome stability requires that recombination between repetitive sequences be avoided. Because short, repetitive sequences are the most abundant, recombination between sequences that are below a certain length are selectively restricted. Novel alleles of the RAD3 and SSL1 genes, which code for components of a basal transcription and UV-damage-repair complex in Saccharomyces cerevisiae, have been found to stimulate recombination between short, repeated sequences.
View Article and Find Full Text PDFMol Cell Biol
January 1997
We have developed a system for analyzing recombination between a DNA fragment released in the nucleus from a single-copy plasmid and a genomic target in order to determine the influence of DNA sequence mismatches on the frequency of gene replacement in Saccharomyces cerevisiae. Mismatching was shown to be a potent barrier to efficient gene replacement, but its effect was considerably ameliorated by the presence of DNA sequences that are identical to the genomic target at one end of a chimeric DNA fragment. Disruption of the mismatch repair gene MSH2 greatly reduces but does not eliminate the barrier to recombination between mismatched DNA fragment and genomic target sequences, indicating that the inhibition of gene replacement with mismatched sequences is at least partially under the control of mismatch repair.
View Article and Find Full Text PDFWe have isolated an allele of the essential DNA repair and transcription gene RAD3 that relaxes the restriction against recombination between short DNA sequences in Saccharomyces cerevisiae. Double-strand break repair and gene replacement events requiring recombination between short identical or mismatched sequences were stimulated in the rad3-G595R mutant cells. We also observed an increase in the physical stability of double-strand breaks in the rad3-G595R mutant cells.
View Article and Find Full Text PDF