Publications by authors named "Negri-Cesi P"

Brain development is an organized, but constantly adaptive, process in which genetic and epigenetic signals allow neurons to differentiate, to migrate, and to develop correct connections. Gender specific prenatal sex hormone milieu participates in the dimorphic development of many neuronal networks. Environmental cues may interfere with these developmental programs, producing adverse outcomes.

View Article and Find Full Text PDF

The progression of prostate cancer (PC) to a metastatic hormone refractory disease is the major contributor to the overall cancer mortality in men, mainly because the conventional therapies are generally ineffective at this stage. Thus, other therapeutic options are needed as alternatives or in addition to the classic approaches to prevent or delay tumor progression. Catecholamines participate to the control of prostate cell functions by the activation of alpha1-adrenoreceptors (alpha1-AR) and increased sympathetic activity has been linked to PC development and evolution.

View Article and Find Full Text PDF

Memory formation and utilization is a complex process involving several brain structures in conjunction as the hippocampus, the amygdala and the adjacent cortical areas, usually defined as medial temporal lobe structures (MTL). The memory processes depend on the formation and modulation of synaptic connectivity affecting synaptic strength, synaptic plasticity and synaptic consolidation. The basic neurocognitive mechanisms of learning and memory are shortly recalled in the initial section of this paper.

View Article and Find Full Text PDF

Platelet-rich plasma (PRP) is a platelet concentrate in a small volume of plasma. It is highly enriched in growth factors able to stimulate the migration and growth of bone-forming cells. PRP is often used in clinical applications, as dental surgery and fracture healing.

View Article and Find Full Text PDF

Prostate cancer (PC) progression from androgen-dependent (AD) to castration-resistant (CR) disease is a process caused by modifications of different signal transduction pathways within tumor microenvironment. Reducing cell proliferation, estrogen receptor beta (ERbeta) is emerging as a potential target in PC chemoprevention. Among the known selective ERbeta ligands, 3beta-Adiol, the endogenous ligand in the prostate, has been proved to counteract PC progression.

View Article and Find Full Text PDF

The exposure to environmental endocrine disrupting compounds (EDC), as polychlorinated biphenyls (PCBs), widely diffused in the environment may produce epigenetic changes that affect the endocrine system. We found that PCBs activate AR transcriptional activity and that this effect is potentiated by the demethylase Jarid1b, a histone demethylase that catalyzes the removal of trimethylation of lysine 4 on histone H3 (H3K4me3), induced by PCB. The aim of the present study was to investigate the effect of the treatment of cultured cells (HEK293) with a mixture of the most diffused environmental PCBs and, also with dihydrotestosterone (DHT), on the functional interaction between AR and Jarid1b.

View Article and Find Full Text PDF

Aberrant activation or 'reactivation' of androgen receptor (AR) during androgen ablation therapy shows a potential cause for the development of castration-resistant prostate cancer. This study tested the hypothesis that PXD101, a potent pan histone deacetylase (HDAC) inhibitor, may prevent onset of castration-resistant phenotype and potentiate hormonal therapy. A panel of human prostate cancer cells with graded castration-resistant phenotype and in vivo models were used to verify this hypothesis.

View Article and Find Full Text PDF

Background: The epigenome represents an important target of environmental pollution. Early-life exposure to polychlorinated biphenyls (PCBs) modifies sex steroid enzymes and receptor transcription patterns. Steroid receptors, such as androgen receptor (AR), function as coregulators of histone modification enzymes.

View Article and Find Full Text PDF

PDGF is a major constituent of platelet rich plasma (PRP), responsible of chemotactic and possibly of mitogenic effects of PRP on osteoblasts. PDGF family includes 5 isoforms: PDGF-AA, PDGF-AB, PDGF-BB, PDGF-CC and PDGF-DD, all expressed in platelets except PDGF-DD. Aim of this study was to analyze the effect of recombinant hPDGF-A, -AB, -B and -C, on migration and proliferation of a human osteoblastic cell line, SaOS-2.

View Article and Find Full Text PDF

The gender-specific expression pattern of aromatase and 5alpha-reductases (5alpha-R) during brain development provides neurons the right amount of estradiol and DHT to induce a dimorphic organization of the structure. Polychlorinated biphenyls (PCBs) are endocrine disruptive pollutants; exposure to PCBs through placental transfer and breast-feeding may adversely affect the organizational action of sex steroid, resulting in long-term alteration of reproductive neuroendocrinology. The study was aimed at: a) evaluating the hypothalamic expression of aromatase, 5alpha-R1 and 5alpha-R2 in fetuses (GD20), infant (PN12), weaning (PN21) and young adult (PN60) male and female rats exposed to PCBs during development; b) correlating these parameters with the time of testicular descent, puberty onset, estrous cyclicity and copulatory behavior; c) evaluating possible alterations of some non reproductive behaviors (locomotion, learning and memory, depression/anxiety behavior).

View Article and Find Full Text PDF

Brain sexual differentiation is a complex developmental phenomenon influenced by the genetic background, sex hormone secretions and environmental inputs, including pollution. The main hormonal drive to masculinize and defeminize the rodent brain is testosterone secreted by the testis. The hormone does not influence sex brain differentiation only in its native configuration, but it mostly needs local conversion into active metabolites (estradiol and DHT) through the action of specific enzymatic systems: the aromatase and 5alpha-reductase (5alpha-R), respectively.

View Article and Find Full Text PDF

Estrogen receptor beta (ERbeta) plays a protective role against uncontrolled cell proliferation. ERbeta is lost during prostate cancer (CaP) progression suggesting its direct involvement in contrasting tumor proliferation in this disease; however, the molecular mechanism at the basis of this effect has not been clearly defined yet. Possible molecular targets of ERbeta were assessed in DU145 cells, a CaP cell line expressing only ERbeta.

View Article and Find Full Text PDF

Polychlorinated biphenyls (PCBs) are industrial pollutants detected in human milk, serum and tissues. They readily cross the placenta to accumulate in fetal tissues, particularly the brain. These compounds affect normal brain sexual differentiation by mechanisms that are incompletely understood.

View Article and Find Full Text PDF

Platelet-enriched plasma (PRP) is used in therapy as a source of growth factors in bone fracture and wound healing; however, few data exist on its role in the different aspects of the healing process. The effect of PRP and of the two main growth factors present in this preparation (platelet-derived growth factor [PDGF] and transforming growth factor-beta [TGF-beta]) was evaluated in vitro using the human osteoblastic cell line SaOS-2, which was shown by reverse transcription-polymerase chain reaction to express both PDGF-alpha and -beta receptors. Batroxobine-activated PRP was added in different concentrations to SaOS-2 cells to assess cell migration (by a microchemotaxis assay) and cell proliferation (by [3H]-thymidine incorporation into the DNA).

View Article and Find Full Text PDF

This review summarizes the most recent information on two pathologies linked to mutations of the androgen receptor, namely, the complete androgen insensitivity syndrome (CAIS) and the spinal and bulbar muscular atrophy (SBMA or Kennedy's disease). Data on the clinical manifestations of the two diseases are presented, together with the most relevant findings on their physiopathology and genetics.

View Article and Find Full Text PDF

Interaction of polychlorinated biphenyls (PCBs) with the aryl hydrocarbon receptor (AhR)/nuclear translocator (ARNT) system might interfere with the mechanisms controlling the sexual differentiation of the developing hypothalamus. The aim of this study was to evaluate the presence of AhR/ARNT in brain cells and the developmental profile of their expression in the hypothalamus of male and female rats during the perinatal period. Brain accumulation of the main PCB congeners after prenatal exposure to Aroclor 1254 and its influence on hypothalamic expression of AhR/ARNT was also assessed.

View Article and Find Full Text PDF

Androgen transformation into estrogens through the aromatase enzyme, occurring in the rat hypothalamus during fetal life, leads to male-specific sexual differentiation of brain. Aromatase shows a peak of expression and activity in a limited period during late gestation; however, the possible dimorphism in its expression during embryogenesis is unclear. One of the mechanisms controlling tissue-specific aromatase expression might be the formation of transcript variants, that differ in the 5'-untranslated regions (5'-UTR).

View Article and Find Full Text PDF

The sex-related morphological differences of many brain nuclei are mainly determined by the hormonal environment present during embryonic development. These morphological differences are at the basis of the gender-specific secretion of many hypothalamic and pituitary hormones, of sexual and aggressive behavior, etc. It is known that, at least in rodents, testosterone (T) secreted by the fetal testes plays a key role in the permanent organization of the developing central nervous system (CNS) toward masculine patterns.

View Article and Find Full Text PDF

The activation of the polyol pathway through aldose reductase (AR) might be involved in diabetic neuropathy. A considerable structural similarity exists between AR and 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD) (both belonging to aldo-keto reductase superfamily); 3alpha-HSD forms 5alpha-reduced-3alpha-hydroxylated steroids, possibly possessing neurotrophic functions. Aim of these experiments was to test "in vitro" in rat sciatic nerves, whether glucose concentrations in the diabetic range might affect the capacity of 3alpha-HSD to transform dihydroprogesterone (DHP) into tetrahydroprogesterone (THP), a steroid proved to possess neurotrophic effects.

View Article and Find Full Text PDF

Aromatase is possibly involved in male brain sexual differentiation. Aim of these experiments was to evaluate the role of testosterone (T) and of DHT, in the regulation of aromatase expression and activity. The experiments were done utilizing rat primary cultures of hypothalamic neurons from 16-day old embryos sex-screened by SRY gene.

View Article and Find Full Text PDF

Background: The presence and possible role of androgen-metabolizing enzymes in androgen-independent prostate carcinoma (CaP) are still unclear. The aim of the present study was: 1) to evaluate the pattern of androgen metabolism (relative production of 5alpha-reduced vs. 17-keto androgens); and 2) to analyze whether one or both the two known 5alpha-reductase isoforms (5alpha-R1 and 5alpha-R2) and the aromatase (Aro) are expressed and active in this pathology.

View Article and Find Full Text PDF

The present paper will summarize two important aspects of the interactions between steroids and the brain, which have recently been studied in the authors' laboratory. In particular the paper will consider data on: (1) the significance of the two isoforms of the 5alpha-R during brain ontogenesis and development, and (2) the cross-talk between glial and neuronal elements, particularly in relation to the metabolism of sex hormones. (1) The data obtained have shown that the 5alpha-R type 1 enzyme is constitutively expressed in the rat CNS at all stages of brain development.

View Article and Find Full Text PDF

The enzyme 5 alpha-reductase (5 alpha-R) activates several delta 4-3keto steroids to more potent derivatives which may also acquire new biological actions. Testosterone gives rise to the most potent natural androgen dihydrotestosterone (DHT), and progesterone to dihydroprogesterone (DHP), a precursor of the endogenous anxiolytic/anesthetic steroid tetrahydroprogesterone (THP). Two isoforms of 5 alpha-R, with a limited degree of homology, different biochemical properties and distinct tissue distribution have been cloned: 5 alpha-R type 1 and type 2.

View Article and Find Full Text PDF

The enzyme 5alpha-reductase plays a key role on several brain functions controlling the formation of anxiolytic/anesthetic steroids derived from progesterone and deoxycorticosterone, the conversion of testosterone to dihydrotestosterone, and the removal of excess of potentially neurotoxic steroids. Two 5alpha-reductase isoforms have been cloned: 5alpha-reductase type 1 is widely distributed in the body, and 5alpha-reductase type 2 is confined to androgen-dependent structures. In this study, the gene expression of the two 5alpha-reductase isozymes has been analyzed in fetal, postnatal, and adult rat brains by RT-PCR followed by Southern analysis.

View Article and Find Full Text PDF