Publications by authors named "Negre D"

Article Synopsis
  • Brown seaweeds are vital to coastal ecosystems, but they are threatened by climate change, prompting a detailed genetic study.
  • The research traced the evolutionary history of brown algae, highlighting significant gene families and metabolic pathways related to their adaptation and functional diversity.
  • Findings also indicated that the integration of large viral genomes has played a crucial role in shaping the genetics and traits of brown algal species over time.
View Article and Find Full Text PDF

Cancer remains a leading cause of death worldwide, but immunotherapies hold promises to cure it by awaking the patient's immune system to provide long-term protection. Cell therapies, involving the infusion of immune cells, either directly or genetically modified, are being developed to recognize and destroy cancer cells. Here, we explored the potential of a new synthetic circuit to reprogram B cells to cure cancers.

View Article and Find Full Text PDF

In recent years, genome sequencing of filamentous fungi has revealed a high proportion of specialised metabolites with growing pharmaceutical interest. However, detecting such metabolites through in silico genome analysis does not necessarily guarantee their expression under laboratory conditions. However, one plausible strategy for enabling their production lies in modifying the growth conditions.

View Article and Find Full Text PDF

The expansion of genetic engineering has brought a new dimension for synthetic immunology. Immune cells are perfect candidates because of their ability to patrol the body, interact with many cell types, proliferate upon activation, and differentiate in memory cells. This study aimed at implementing a new synthetic circuit in B cells, allowing the expression of therapeutic molecules in a temporally and spatially restricted manner that is induced by the presence of specific antigens.

View Article and Find Full Text PDF

Context: Mammalian target of rapamycin complex 1 (mTORC1) is an essential sensor that regulates fundamental biological processes like cell growth, proliferation and energy metabolism. The treatment of disease by sirolimus, a mTORC1 inhibitor, causes adverse effects, such as female fertility disorders.

Aims: The objective of the study was to decipher the reproductive consequences of a downregulation of mTORC1 in the hypothalamus.

View Article and Find Full Text PDF

Here, we report a novel experimental setup to perform adoptive transfer of gene-edited B cells using humanized immune system mice by infusing autologous HIS mouse-derived human B cells "educated" in a murine context and thus rendered tolerant to the host. The present approach presents two advantages over the conventional humanized PBMC mouse models: (i) it circumvents the risk of xenogeneic graft-versus-host reaction and (ii) it mimics more closely human immune responses, thus favoring clinical translation. We show that the frequencies and numbers of transduced B cells in recipient's spleens one week post-transfer are within the range of the size of the pre-immune B cell population specific for a given protein antigen in the mouse.

View Article and Find Full Text PDF

Understanding growth mechanisms in brown algae is a current scientific and economic challenge that can benefit from the modeling of their metabolic networks. The sequencing of the genomes of and has provided the necessary data for the reconstruction of Genome-Scale Metabolic Networks (GSMNs). The same in silico method deployed for the GSMN reconstruction of to investigate the metabolic capabilities of these two algae, was used.

View Article and Find Full Text PDF

T cells represent a valuable tool for treating cancers and infectious and inherited diseases; however, they are mainly short-lived in vivo. T-cell therapies would strongly benefit from gene transfer into long-lived persisting naive T cells or T-cell progenitors. Here we demonstrate that baboon envelope glycoprotein pseudotyped lentiviral vectors (BaEV-LVs) far outperformed other LV pseudotypes for transduction of naive adult and fetal interleukin-7-stimulated T cells.

View Article and Find Full Text PDF

Hematopoietic stem cell (HSC)-based gene therapy trials are now moving toward the use of lentiviral vectors (LVs) with success. However, one challenge in the field remains: efficient transduction of HSCs without compromising their stem cell potential. Here we showed that measles virus glycoprotein-displaying LVs (hemagglutinin and fusion protein LVs [H/F-LVs]) were capable of transducing 100% of early-acting cytokine-stimulated human CD34 (hCD34) progenitor cells upon a single application.

View Article and Find Full Text PDF

Unlabelled: Essentials B cells are attractive targets for gene therapy and particularly interesting for immunotherapy. A baboon envelope pseudotyped lentiviral vector (BaEV-LV) was tested for B-cell transduction. BaEV-LVs transduced mature and plasma human B cells with very high efficacy.

View Article and Find Full Text PDF

Unlabelled: Nipah virus and Hendra virus are emerging, highly pathogenic, zoonotic paramyxoviruses that belong to the genus Henipavirus. They infect humans as well as numerous mammalian species. Both viruses use ephrin-B2 and -B3 as cell entry receptors, and following initial entry into an organism, they are capable of rapid spread throughout the host.

View Article and Find Full Text PDF

As a prelude to immunization studies in nonhuman primates, we compared in mice the immunogenicity of a simian immunodeficiency virus (SIV)-based integrase (IN)-defective lentiviral vector (IDLV) encoding the model antigen-enhanced green fluorescence protein (eGFP) in the presence or absence of the murine granulocyte-macrophage colony-stimulating factor (mGM-CSF) expressed from an internal ribosomal entry site (IRES) sequence. BALB/c mice were immunized once intramuscularly with IDLV expressing eGFP alone or eGFP and mGM-CSF and immune responses were evaluated up to 90 days from the single intramuscular immunization. Results indicated that the mGM-CSF was unable to improve the magnitude and quality of the immune response against the eGFP transgene in the context of the SIV-based IDLV, as evaluated by enzyme-linked immunosorbent spot (ELISPOT) assays for interferon-γ (IFN-γ) and by intracellular cytokine staining for IFN-γ, interleukin-2 (IL-2), and tumor necrosis factor-alpha (TNF-α).

View Article and Find Full Text PDF

Hematopoietic stem cell (HSC)-based gene therapy holds promise for the cure of many diseases. The field is now moving toward the use of lentiviral vectors (LVs) as evidenced by 4 successful clinical trials. These trials used vesicular-stomatitis-virus-G protein (VSV-G)-LVs at high doses combined with strong cytokine-cocktail stimulation to obtain therapeutically relevant transduction levels; however, they might compromise the HSC character.

View Article and Find Full Text PDF

The four related mammalian MEX-3 RNA-binding proteins are evolutionarily conserved molecules for which the in vivo functions have not yet been fully characterized. Here, we report that male mice deficient for the gene encoding Mex3b are subfertile. Seminiferous tubules of Mex3b-deficient mice are obstructed as a consequence of the disrupted phagocytic capacity of somatic Sertoli cells.

View Article and Find Full Text PDF

Efficient production of transgenic animals using low-titer lentiviral constructs remains challenging. Here we demonstrate that microinjection of simian immundeficiency virus-derived lentiviral constructs can produce transgenic mice and rats with high efficiency even when using low-titer virus preparations.

View Article and Find Full Text PDF

Immune tolerance to self-antigens is a complex process that utilizes multiple mechanisms working in concert to maintain homeostasis and prevent autoimmunity. Considerable progress in deciphering the mechanisms controlling the activation or deletion of T cells has been made by using T cell receptor (TCR) transgenic mice. One such model is the F5 model in which CD8 T cells express a TCR specific for an epitope derived from the influenza NP68 protein.

View Article and Find Full Text PDF

Regulation of the extracellular matrix (ECM) plays an important functional role either in physiological or pathological conditions. The plasminogen activation (PA) system, comprising the uPA and tPA proteases and their inhibitor PAI-1, is one of the main suppliers of extracellular proteolytic activity contributing to tissue remodeling. Although its function in development is well documented, its precise role in mouse embryonic stem cell (ESC) differentiation in vitro is unknown.

View Article and Find Full Text PDF

Although clinical benefits have been reported in several human hematopoietic gene therapy trials, a remaining important goal is the transition to nonmyeloablative pretransplantation conditioning to decrease toxicity. Previous attempts at reduced intensity conditioning in nonhuman primates have resulted in only temporary vector marking of autologous blood cells or their persistence at low levels, well below the thresholds for clinical efficacy. In addition, we reasoned that lentiviral vector particles displaying cytokines at their surface have the potential to preserve stem cell fitness better than current ex vivo transduction protocols, which involve exposure to cytokine overstimulation.

View Article and Find Full Text PDF

In vivo lentiviral vector (LV)-mediated gene delivery would represent a great step forward in the field of gene therapy. Therefore, we have engineered a novel LV displaying SCF and a mutant cat endogenous retroviral glycoprotein, RDTR. These RDTR/SCF-LVs outperformed RDTR-LVs for transduction of human CD34(+) cells (hCD34(+)).

View Article and Find Full Text PDF

Gene transfer into quiescent T and B cells is of importance for gene therapy and immunotherapy approaches to correct hematopoietic disorders. Previously, we generated lentiviral vectors (LVs) pseudotyped with the Edmonston measles virus (MV) hemagglutinin and fusion glycoproteins (Hgps and Fgps) (H/F-LVs), which, for the first time, allowed efficient transduction of quiescent human B and T cells. These target cells express both MV entry receptors used by the vaccinal Edmonston strain, CD46 and signaling lymphocyte activation molecule (SLAM).

View Article and Find Full Text PDF

Embryonic stem (ES) cells differentiate in vitro into all cell lineages. We previously found that the p38 mitogen activated kinase (p38MAPK) pathway controls the commitment of ES cells toward either cardiomyogenesis (p38 on) or neurogenesis (p38 off ). In this study, we show that p38α knock-out ES cells do not differentiate into cardiac, endothelial, smooth muscle, and skeletal muscle lineages.

View Article and Find Full Text PDF

Transgenic rabbit is the preferred disease model of atherosclerosis, lipoprotein metabolism and cardiovascular diseases since upon introducing genetic mutations of human genes, rabbit models reflect human physiological and pathological states more accurately than mouse models. Beyond that, transgenic rabbits are also used as bioreactors to produce pharmaceutical proteins in their milk. Since in the laboratory rabbit the conventional transgenesis has worked with the same low efficiency in the last twenty five years and truly pluripotent embryonic stem cells are not available to perform targeted mutagenesis, our aim was to adapt lentiviral transgenesis to this species.

View Article and Find Full Text PDF

Background: Adiponectin is involved in the regulation of energy homeostasis and more recently in the reproductive functions. We have previously shown that adiponectin receptors (AdipoR1 and AdipoR2) are expressed in human granulosa cells. However, it remains to be investigated whether both AdipoR1 and AdipoR2 or only one of these receptors serve as the major receptor(s) for adiponectin in human granulosa cells.

View Article and Find Full Text PDF