Publications by authors named "Negin Sohrabi"

In this study, a new magnetic biocompatible hydrogel was synthesized as an adsorbent for Deltamethrin pesticide removal. The optimal conditions and adsorption process of Deltamethrin by chitosan/polyacrylic acid/FeO nanocomposite hydrogel was studied by Response Surface Methodology by Central Composite Design (RSM-CCD) and Artificial Neural Network (ANN). This adsorbents were synthesized, and then characterized and investigated using FT-IR, XRD, FE-SEM, EDX, Map, VSM, and TGA methods.

View Article and Find Full Text PDF

In this study, a sensitive and selective fluorescent chemosensor was developed for the determination of pirimicarb pesticide by adopting the surface molecular imprinting approach. The magnetic molecularly imprinted polymer (MIP) nanocomposite was prepared using pirimicarb as the template molecule, CuFeO nanoparticles, and graphene quantum dots as a fluorophore (MIP-CuFeO/GQDs). It was then characterized using X-ray diffraction (XRD) technique, Fourier transforms infrared (FT-IR) spectroscopy, scanning electron microscope (SEM), and transmission electron microscopy (TEM).

View Article and Find Full Text PDF

Novel hydrogel beads based on nanocomposite with outstanding antibacterial and swelling capabilities have been successfully produced as an efficient drug carrier for potential drug delivery systems in wound healing applications. The beads were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and EDX-Mapping analysis. Then, using tetracycline hydrochloride (TCH) as a model drug system, they were studied in vitro for their potential efficiency as pH and temperature dependent sustained drug delivery carriers.

View Article and Find Full Text PDF

Chlorpyrifos is a hazardous material that pollutes the environment and also poses risks to human health. Thus, it is necessary to remove chlorpyrifos from aqueous media. In this study, chitosan-based hydrogel beads with different content of iron oxide-graphene quantum dots were synthesized and used for the ultrasonic-assisted removal of chlorpyrifos from wastewater.

View Article and Find Full Text PDF

Chemotherapy is currently used for most cancer treatments, but one of the significant problems of this treatment is that it affects the healthy tissues of the body. Therefore, designing new systems for the intelligent and controlled release of these drugs in cancer tissues is one of the major challenges in the world. Hence, today, huge costs are spent designing appropriate new drug delivery systems (DDS) with controlled drug release.

View Article and Find Full Text PDF