Cardiovascular diseases [CVD] are the number one reason for morbidity and mortality in the modern world, and their incidence is increasing at an incredible pace. Increasing evidence has shown the significant functions of microRNAs in the cardiovascular system and has highlighted their potential application as a new era of diagnostic and therapeutic targets for CVD that can improve the prognosis and life expectancy of patients. Among more than 2,000 microRNAs, microRNA-21 [miR-21] is highly expressed in human hearts and has earned the interest of researchers as a potential biomarker in a wide range of common heart conditions.
View Article and Find Full Text PDFIn this study, new l-asparagine grafted on 3-aminopropyl-modified FeO@SiO core-shell magnetic nanoparticles using the EDTA linker (FeO@SiO-APTS-EDTA-asparagine) was prepared and its structures properly confirmed using different spectroscopic, microscopic and magnetic methods or techniques including FT-IR, EDX, XRD, FESEM, TEM, TGA and VSM. The FeO@SiO-APTS-EDTA-asparagine core-shell nanomaterial was found, as a highly efficient multifunctional and recoverable organocatalyst, to promote the efficient synthesis of a wide range of biologically-active 3,4-dihydropyrimidin-2(1)-one derivatives under solvent-free conditions. It was proved that FeO@SiO-APTS-EDTA-asparagine MNPs, as a catalyst having excellent thermal and magnetic stability, specific morphology and acidic sites with appropriate geometry, can activate the Biginelli reaction components.
View Article and Find Full Text PDFIn this research, cellulose grafted to chitosan by EDTA (Cs-EDTA-Cell) bio-based material is reported and characterized by a series of various methods and techniques such as FTIR, DRS-UV-Vis, TGA, FESEM, XRD and EDX analysis. In fact, the Cs-EDTA-Cell network is more thermally stable than pristine cellulose or chitosan. There is a plenty of both acidic and basic sites on the surface of this bio-based and biodegradable network, as a multifunctional organocatalyst, to proceed three-component synthesis of 2-amino-4H-pyran derivatives at room temperature in EtOH.
View Article and Find Full Text PDF