Publications by authors named "Negar Sehati"

The present study aimed to investigate the persistence and existence of chemical warfare agents (CWAs) and related dissipation products in the environment of Sardasht area, Iran. Three types of environmental samples including water, soil, and native local plant materials were collected and analyzed. Gas chromatography-mass spectrometry in the electron impact ionization mode has been developed for the separation, screening, identification, and qualification of chemicals after the sample preparation methods.

View Article and Find Full Text PDF

Herein, the application of Graphene oxide-polyaniline (GO/PANI) in one of newly hollow fiber based microextraction techniques so called (HF-S/LPME) was investigated successfully. Graphene oxide-polyaniline (GO/PANI) nanocomposite was generated via an amidation reaction in the presence of N, N'-dicyclohexylcarbodiimide (DCC), N-hydroxysuccinimide (NHS) and GO as starting material. The solid sorbent dispersed in dihexyl ether was immersed and injected into the lumen of hollow fiber.

View Article and Find Full Text PDF

In this paper, TiO2 nanowires and TiO2 nanoparticles have been successfully anchored on graphene oxide (GO) nanosheets by a facile one-step hydrothermal method. The synthesized TiO2 NWs/RGO and TiO2 NPs/RGO nanocomposites were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. After comparatively studying of the as-made nanocomposites, TiO2 NWs/RGO nanocomposite showed the best adsorbing performance and applied as an attractive efficient sorbent reinforced with microporous hollow fiber membrane through the sol-gel technology.

View Article and Find Full Text PDF

The aim of this study was to introduce a novel, simple, and highly sensitive preparation method for determination of tylosin in different milk samples. In the so-called functionalized TiO2 hollow fiber solid/liquid-phase microextraction method, the acceptor phase is functionalized TiO2 nanoparticles that are dispersed in the organic solvent and held in the pores and lumen of a porous polypropylene hollow fiber membrane. An effective functionalization of TiO2 nanoparticles has been done in the presence of aqueous H2 O2 and a mild acidic ambient under UV irradiation.

View Article and Find Full Text PDF