Proc IEEE Int Symp Biomed Imaging
May 2024
Retinotopic mapping aims to uncover the relationship between visual stimuli on the retina and neural responses on the visual cortical surface. This study advances retinotopic mapping by applying diffeomorphic registration to the 3T NYU retinotopy dataset, encompassing analyze-PRF and mrVista data. Diffeomorphic Registration for Retinotopic Maps (DRRM) quantifies the diffeomorphic condition, ensuring accurate alignment of retinotopic maps without topological violations.
View Article and Find Full Text PDFHigh-field functional magnetic resonance imaging generates in vivo retinotopic maps, but quantifying them remains challenging. Here, we present a pipeline based on conformal geometry and Teichmüller theory for the quantitative characterization of human retinotopic maps. We describe steps for cortical surface parameterization and surface-spline-based smoothing.
View Article and Find Full Text PDFBackground: Amyloid-β (Aβ) plaques and tau protein tangles in the brain are the defining 'A' and 'T' hallmarks of Alzheimer's disease (AD), and together with structural atrophy detectable on brain magnetic resonance imaging (MRI) scans as one of the neurodegenerative ('N') biomarkers comprise the "ATN framework" of AD. Current methods to detect Aβ/tau pathology include cerebrospinal fluid (invasive), positron emission tomography (PET; costly and not widely available), and blood-based biomarkers (promising but mainly still in development).
Objective: To develop a non-invasive and widely available structural MRI-based framework to quantitatively predict the amyloid and tau measurements.