Publications by authors named "Negar Gharbi"

This study explored the impact of homogenization (at pressures of 16, 30, and 45 MPa) on both raw and high hydrostatic pressure (HHP)-treated human milk (HM). It focused on protein compositions and binding forces of soluble and insoluble fractions for both milk fat globule membrane (MFGM) and skim milk. Mild homogenization of HHP-treated milk increased lactoferrin (LF) levels in the insoluble fractions of both MFGM and skim milk, due to insoluble aggregation through hydrophobic interactions.

View Article and Find Full Text PDF

Preservation processes applied to ensure microbial safety of human milk (HM) can modify the native structure of proteins and their bioactivities. Consequently, this study evaluated the effect of pasteurization methods (Holder pasteurization, high-temperature short-time (HTST), and high hydrostatic pressure (HHP)) of whole human milk (HM) on protein aggregates in skim milk and cream fractions. For heat-treated whole milk, insoluble protein aggregates at milk fat globule membrane (MFGM) were formed by disulfide and non-covalent bonds, but insoluble skim milk protein aggregates were only stabilized by non-covalent interactions.

View Article and Find Full Text PDF

High hydrostatic pressure (HHP) treatment induces structural changes in bovine milk proteins depending on factors such as the temperature, pH, concentration, decompression rate, cycling, composition of the medium and pressure level and duration. An in-depth understanding of the impact of these factors is important for controlling HHP-induced modification of milk proteins and the interactions within or between them, which can be applied to prevent undesired aggregation, gelation, and precipitation during HHP processing or to obtain specific milk protein modifications to attain specific protein properties. In this regard, understanding the influences of these factors can provide insight into the modulation and optimization of HHP conditions to attain specific milk protein structures.

View Article and Find Full Text PDF

Egg white proteins (EWPs) are important components of many food products. To obtain optimal functionality, EWP aggregation needs to be controlled. Different treatments can lead to the formation of aggregates in diverse ways, depending on the parameters of the treatments.

View Article and Find Full Text PDF