Cell wall deficient bacterial L-forms are induced by exposure to cell wall-targeting antibiotics and immune effectors such as lysozyme. L-forms of different bacteria (including Escherichia coli) have been reported in human infections, but whether this is a normal adaptive strategy or simply an artifact of antibiotic treatment in certain bacterial species remains unclear. Here we show that members of a representative, diverse set of pathogenic E.
View Article and Find Full Text PDFBackground: Cerebrospinal fluid (CSF) circulation in the brain has garnered considerable attention in recent times. In contrast, there have been fewer studies focused on the spine, despite the expected importance of CSF circulation in disorders specific to the spine, including syringomyelia. The driving forces that regulate spinal CSF flow are not well defined and are likely to be different to the brain given the anatomical differences and proximity to the heart and lungs.
View Article and Find Full Text PDFGround state depletion followed by individual molecule return microscopy (GSDIM) has been used in the past to study the nanoscale distribution of protein co-localization in living cells. We now demonstrate the successful application of GSDIM to archival human brain tissue sections including from Alzheimer's disease cases as well as experimental tissue samples from mouse and zebrafish larvae. Presynaptic terminals and microglia and their cell processes were visualized at a resolution beyond diffraction-limited light microscopy, allowing clearer insights into their interactions in situ.
View Article and Find Full Text PDFTo understand plant growth and development, it is often necessary to investigate the organization of plant cells and plant cell walls. Plant cell walls are often fluorescently labeled for confocal imaging with the dye propidium iodide using a pseudo-Schiff reaction. This reaction binds free amine groups on dye molecules to aldehyde groups on cellulose that result from oxidation with periodic acid.
View Article and Find Full Text PDFMicronuclei represent the cellular attempt to compartmentalize DNA to maintain genomic integrity threatened by mitotic errors and genotoxic events. Some micronuclei show aberrant nuclear envelopes (NEs) that collapse, generating damaged DNA that can promote complex genome alterations. However, ruptured micronuclei also provide a pool of cytosolic DNA that can stimulate antitumor immunity, revealing the complexity of micronuclear impact on tumor progression.
View Article and Find Full Text PDFBackground: Cell division (mitosis) results in the equal segregation of chromosomes between two daughter cells. The mitotic spindle plays a pivotal role in chromosome alignment and segregation during metaphase and anaphase. Structural or functional errors of this spindle can cause aneuploidy, a hallmark of many cancers.
View Article and Find Full Text PDFThe mitotic spindle is required for chromosome congression and subsequent equal segregation of sister chromatids. These processes involve a complex network of signaling molecules located at the spindle. The endocytic protein, clathrin, has a "moonlighting" role during mitosis, whereby it stabilizes the mitotic spindle.
View Article and Find Full Text PDFEndosomal sorting complexes required for transport (ESCRT)-0 sorts ubiquitylated EGFR within the early endosome so that the receptor can be incorporated into intralumenal vesicles. An important question is whether ESCRT-0 acts solely upon EGFR that has already entered the vacuolar early endosome (characterised by the presence of EEA1) or engages EGFR within earlier compartments. Here, we employ a suite of software to determine the localisation of ESCRT-0 at subpixel resolution and to perform particle-based colocalisation analysis with other endocytic markers.
View Article and Find Full Text PDFMicrotubule-dependent movement is crucial for the spatial organization of endosomes in most eukaryotes, but as yet there has been no systematic analysis of how a particular microtubule motor contributes to early endosome dynamics. Here we tracked early endosomes labeled with GFP-Rab5 on the nanometer scale, and combined this with global, first passage probability (FPP) analysis to provide an unbiased description of how the minus-end microtubule motor, cytoplasmic dynein, supports endosome motility. Dynein contributes to short-range endosome movement, but in particular drives 85-98% of long, inward translocations.
View Article and Find Full Text PDFThe first passage probability (FPP), of trafficked intracellular particles reaching a displacement L, in a given time t or inverse velocity S = t/L, can be calculated robustly from measured particle tracks. The FPP gives a measure of particle movement in which different types of motion, e.g.
View Article and Find Full Text PDF