Efforts to enhance the accuracy of protein sequence classification are of utmost importance in driving forward biological analyses and facilitating significant medical advancements. This study presents a cutting-edge model called ProtICNN-BiLSTM, which combines attention-based Improved Convolutional Neural Networks (ICNN) and Bidirectional Long Short-Term Memory (BiLSTM) units seamlessly. Our main goal is to improve the accuracy of protein sequence classification by carefully optimizing performance through Bayesian Optimisation.
View Article and Find Full Text PDFThe patients' vocal Parkinson's disease (PD) changes could be identified early on, allowing for management before physically incapacitating symptoms appear. In this work, static as well as dynamic speech characteristics that are relevant to PD identification are examined. Speech changes or communication issues are among the challenges that Parkinson's individuals may encounter.
View Article and Find Full Text PDF