Publications by authors named "Neeru M Sharma"

Background: Recent clinical studies demonstrate that SGLT2 (sodium-glucose cotransporter 2) inhibitors ameliorate heart failure (HF). The present study was conducted to assess the expression and function of renal SGLT2 and the influence of enhanced renal sympathetic tone in HF.

Methods: Four weeks after coronary artery ligation surgery to induce HF, surgical bilateral renal denervation (RDN) was performed in rats.

View Article and Find Full Text PDF

Central infusion of Ang II (angiotensin II) has been associated with increased sympathetic outflow resulting in neurogenic hypertension. In the present study, we appraised whether the chronic increase in central Ang II activates the paraventricular nucleus of the hypothalamus (PVN) resulting in elevated sympathetic tone and altered baro- and chemoreflexes. Further, we evaluated the contribution of HIF-1α (hypoxia-inducible factor-1α), a transcription factor involved in enhancing the expression of N-methyl-D-aspartate receptors and thus glutamatergic-mediated sympathetic tone from the PVN.

View Article and Find Full Text PDF

Increased matrix metalloprotease 9 (MMP9) after myocardial infarction (MI) exacerbates ischemia-induced chronic heart failure (CHF). Autophagy is cardioprotective during CHF; however, whether increased MMP9 suppresses autophagic activity in CHF is unknown. This study aimed to determine whether increased MMP9 suppressed autophagic flux and MMP9 inhibition increased autophagic flux in the heart of rats with post-MI CHF.

View Article and Find Full Text PDF

The basolateral amygdala (BLA) is critical in the control of the sympathetic output during stress. Studies demonstrated the involvement of the renin-angiotensin system components in the BLA. Angiotensin-(1-7) [Ang-(1-7)], acting through Mas receptors, reduces stress effects.

View Article and Find Full Text PDF

Background: Glucagon-like peptide-1 (GLP-1) induces diuresis and natriuresis. Previously we have shown that GLP-1 activates afferent renal nerve to increase efferent renal sympathetic nerve activity that negates the diuresis and natriuresis as a negative feedback mechanism in normal rats. However, renal effects of GLP-1 in heart failure (HF) has not been elucidated.

View Article and Find Full Text PDF

Activation of renin-angiotensin- system, nitric oxide (NO•) bioavailability and subsequent sympathoexcitation plays a pivotal role in the pathogenesis of many cardiovascular diseases, including hypertension. Previously we have shown increased protein expression of PIN (a protein inhibitor of nNOS: neuronal nitric oxide synthase, known to dissociate nNOS dimers into monomers) with concomitantly reduced levels of catalytically active dimers of nNOS in the PVN of rats with heart failure. To elucidate the molecular mechanism by which Angiotensin II (Ang II) increases PIN expression, we used Sprague-Dawley rats (250-300 g) subjected to intracerebroventricular infusion of Ang II (20 ng/min, 0.

View Article and Find Full Text PDF

Glucagon-like peptide-1 receptor (GLP-1R) agonists, widely used to treat type 2 diabetes, reduce blood pressure (BP) in hypertensive patients. Whether this action involves central mechanisms is unknown. We here report that repeated lateral ventricular (LV) injection of GLP-1R agonist, liraglutide, once daily for 15 days counteracted the development of hypertension in spontaneously hypertensive rats (SHR).

View Article and Find Full Text PDF

Glucagon-like peptide-1 (GLP-1), an incretin hormone, has diuretic and natriuretic effects. The present study was designed to explore the possible underlying mechanisms for the diuretic and natriuretic effects of GLP-1 via renal nerves in rats. Immunohistochemistry revealed that GLP-1 receptors were avidly expressed in the pelvic wall, the wall being adjacent to afferent renal nerves immunoreactive to calcitonin gene-related peptide, which is the dominant neurotransmitter for renal afferents.

View Article and Find Full Text PDF

Scientific advocacy and outreach programs are encouraged to increase public understanding of scientific knowledge and generate interest in science, technology, engineering, and mathematics (STEM) careers. However, evaluation of these events' effectiveness is difficult and somewhat rare. This study's purpose was to better understand how effective an established physiology-based outreach program was in generating interest in STEM careers, while simultaneously providing information that can be used to increase the effectiveness of future events.

View Article and Find Full Text PDF

Exercise training (ExT) is an established non-pharmacological therapy that improves the health and quality of life in patients with chronic heart failure (CHF). Exaggerated sympathetic drive characterizes CHF due to an imbalance of the autonomic nervous system. Neuronal nitric oxide synthase (nNOS) in the paraventricular nucleus (PVN) produce nitric oxide (NO•), which is known to regulate the sympathetic tone.

View Article and Find Full Text PDF

There are multiple challenges for neuropharmacology in the future. Undoubtedly, one of the greatest challenges is the development of strategies for pharmacological targeting of specific brain regions for treatment of diseases. GABA is the main inhibitory neurotransmitter in the central nervous system, and dysfunction of GABAergic mechanisms is associated with different neurological conditions.

View Article and Find Full Text PDF

An activated renin-angiotensin system (RAS) within the central nervous system has been implicated in sympathoexcitation during various disease conditions including congestive heart failure (CHF). In particular, activation of the RAS in the paraventricular nucleus (PVN) of the hypothalamus has been recognized to augment sympathoexcitation in CHF. We observed a 2.

View Article and Find Full Text PDF

Nitric oxide (NO) synthesized via neuronal nitric oxide synthase (nNOS) plays a significant role in regulation/modulation of autonomic control of circulation. Various pathological states are associated with diminished nNOS expression and blunted autonomic effects of NO in the central nervous system (CNS) including heart failure, hypertension, diabetes mellitus, chronic renal failure etc. Therefore, elucidation of the molecular mechanism/s involved in dysregulation of nNOS is essential to understand the pathogenesis of increased sympathoexcitation in these diseased states.

View Article and Find Full Text PDF

Background: Increased sympathetic outflow is a major contributor to the progression of chronic heart failure (CHF). Potentiation of glutamatergic tone has been causally related to the sympathoexcitation in CHF. Specifically, an increase in the N-methyl-d-aspartate-type 1 receptor (NMDA-NR) expression within the paraventricular nucleus (PVN) is critically linked to the increased sympathoexcitation during CHF.

View Article and Find Full Text PDF

Background: Liposomes are concentric lipid vesicles that allow a sustained release of entrapped substances. GABA (γ-aminobutyric acid) is the most prevalent inhibitory neurotransmitter in the central nervous system.

New Method: Using GABA-containing liposomes (GL) prepared by the freeze-thawing method, we determined the effect of sustained release of GABA on expression of neuronal nitric oxide synthase (nNOS) and GABA receptor (GABAR) in an in vitro neuronal model.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) have a fundamental role in diabetic heart failure. The cardioprotective miRNA-133a (miR-133a) is downregulated, and contractility is decreased in diabetic hearts. Norepinephrine (NE) is a key catecholamine that stimulates contractility by activating β-adrenergic receptors (β-AR).

View Article and Find Full Text PDF

Chronic activation of the sympathetic drive contributes to cardiac remodeling and dysfunction during chronic heart failure (HF). The present study was undertaken to assess whether renal denervation (RDN) would abrogate the sympathoexcitation in HF and ameliorate the adrenergic dysfunction and cardiac damage. Ligation of the left coronary artery was used to induce HF in Sprague-Dawley rats.

View Article and Find Full Text PDF

Renal denervation (RDN) has been postulated to reduce sympathetic drive during heart failure (HF), but the central mechanisms are not completely understood. The purpose of the present study was to assess the contribution of neuronal nitric oxide synthase (nNOS) within the paraventricular nucleus (PVN) in modulating sympathetic outflow in rats with HF that underwent RDN. HF was induced in rats by ligation of the left coronary artery.

View Article and Find Full Text PDF

Exercise training (ExT) is currently being used as a nonpharmacological strategy to improve cardiac function in diabetic patients. However, the molecular mechanism(s) underlying its beneficial effects remains poorly understood. Oxidative stress is known to play a key role in the pathogenesis of diabetic cardiomyopathy and one of the enzyme systems that produce reactive oxygen species is NADH/NADPH oxidase.

View Article and Find Full Text PDF

One of the key mechanisms involved in renal Na(+) retention in chronic heart failure (CHF) is activation of epithelial Na(+) channels (ENaC) in collecting tubules. Proteolytic cleavage has an important role in activating ENaC. We hypothesized that enhanced levels of proteases in renal tubular fluid activate ENaC, resulting in renal Na(+) retention in rats with CHF.

View Article and Find Full Text PDF

Exercise training (ExT) has been shown to reduce sympathetic drive during heart failure (HF). The subfornical organ (SFO) is involved in the neural control of sympathetic drive. We hypothesized that an activated SFO contributes to enhanced sympathetic activity in HF.

View Article and Find Full Text PDF

An increased sympathetic drive is an adverse characteristic in chronic heart failure (CHF). The protein expression of neuronal nitric oxide synthase (nNOS)- and hence nitric oxide (NO)-mediated sympathoinhibition is reduced in the paraventricular nucleus (PVN) of rats with CHF. However, the molecular mechanism(s) of nNOS downregulation remain(s) unclear.

View Article and Find Full Text PDF

Oxidative stress plays a major role in the pathogenesis of heart failure, where the contractile response to β-adrenergic stimulation is profoundly depressed. This condition involves L-type Ca(2+) channels, but the mechanisms underlying their impaired adrenergic regulation are unclear. Thus the present study explored the basis for impaired adrenergic control of Ca(2+) channels in a rat infarction model of heart failure.

View Article and Find Full Text PDF

In the present study, we developed a lentiviral vector with human cytomegalovirus promoter permitting high-level of nNOS expression. Neuronal cell line NG108 was used as an in vitro model to check the validity of gene transfer. The cells were infected with lenti-EGFP or lenti-nNOS particles for 24h.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionfjqjc7q664r8rf5opdi8uvhii1uhne0h): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once