A trace amount of interfacial water is required to initiate hydrosilation reactions of trifunctional organosilanes to form surface assemblies. In recent studies, we have learned that water also has a critical role in directing molecular placement on surfaces because water can react with silicon to provide oxygenated sites for surface binding. Consequently, the wettability nature of substrates influences the placement and density of organosilane films formed by vapor-phase reactions.
View Article and Find Full Text PDFThe surface assembly of 2,3,7,8,12,13,17,18-octaethylporphyrin (OEP) using silicon tetrachloride as a coupling agent was investigated using atomic force microscopy (AFM). Nanopatterned films of Si-OEP were prepared by protocols of colloidal lithography to evaluate the morphology, thickness, and molecular orientation for samples prepared on Si(111). The natural self-stacking of porphyrins can pose a challenge for molecular patterning.
View Article and Find Full Text PDF