Publications by authors named "Neelu Nawani"

Background: Pregnancy and HIV affect CD4+ T lymphocytes and impact performance of QuantiFERON-TB Gold (QFT). We compared the results of QFT with QuantiFERON-TB Gold Plus (QFT-Plus), which also measures CD8+ responses to TB antigens, during pregnancy and postpartum.

Methods: We screened 516 pregnant women for TB infection (TBI) with IGRA.

View Article and Find Full Text PDF
Article Synopsis
  • The Rapid Fluorescence Focus Inhibition Test (RFFIT) measures the potency of rabies monoclonal antibodies, but is time-consuming and requires specialized facilities and trained personnel.
  • The World Health Organization has encouraged the development of alternative methods, leading to the creation of an In-vitro ELISA test that uses inactivated rabies vaccine to quantify antibody potency.
  • This new ELISA test is validated for accuracy and sensitivity, easy to perform, cost-effective, and can be conducted without the need for specialized labs, providing results in just a few hours.
View Article and Find Full Text PDF

Vaginal health is essential to a woman's overall well-being, as abnormalities in vaginal health can lead to a variety of gynaecological disorders, such as urinary tract infections, yeast infections, and bacterial vaginosis. The vaginal microbiome is essential for the prevention of these infections. Disruptions in this microbial ecosystem can significantly impact vaginal health.

View Article and Find Full Text PDF

Current postexposure prophylaxis of rabies includes vaccines, human rabies immunoglobulin (RIG), equine RIG, and recombinant monoclonal antibodies (mAb). In the manufacturing of rabies recombinant mAb, charge variants are the most common source of heterogeneity. Charge variants of rabies mAb were isolated by salt gradient cation exchange chromatography (CEX) to separate acidic and basic and main charge variants.

View Article and Find Full Text PDF

COVID-19 shook the world during the pandemic, where the climax it reached was vaccine manufacturing at an unfathomable pace. Alternative promising solutions to prevent infection from SARS-CoV-2 and its variants will remain crucial in the years to come. Due to its key role in viral replication, the major protease (Mpro) enzyme of SARS-CoV-2 can be an attractive therapeutic target.

View Article and Find Full Text PDF

The nosocomial infection outbreak caused by remains a public health concern. Multi-drug resistant (MDR) strains of are rapidly spreading leading to a huge mortality rate because of the unavailability of promising antimicrobials. MurG glycotransferase [UDP-N-acetylglucosamine-N-acetylmuramyl (pentapeptide) pyrophosphoryl-undecaprenol N-acetylglucosamine transferase] is located at the plasma membrane and plays a key role in murein (peptidoglycan) biosynthesis in bacteria.

View Article and Find Full Text PDF

The rapid development of multi-drug resistant (MDR) pathogens adds urgency to search for novel and safe drugs having promising action on new and re-emerging infectious pathogens. Serratia marcescens is an MDR pathogen that causes several-healthcare associated infections. Curbing bacterial virulence, rather than inhibiting its growth, is a promising strategy to diminish the pathogenesis of infectious bacteria, reduce the development of antimicrobial resistance, and boost the host immune power to eradicate infections.

View Article and Find Full Text PDF

Unlabelled: In this study we aim to investigate the computational docking approach of biofabricated silver nanoparticles against virulent exoenzymes, such as ExoS and ExoY. Therefore, the synthesis and characterization of biofabricated silver nanoparticles using leaves (Pb-AgNPs) were carried out. The surface topology and functional group attachment on the surface of Pb-AgNPs were analyzed using UV-visible spectroscopy, Scanning Electron Microscopy, Fourier Transformed Infrared Spectroscopy (FTIR), and X-Ray Diffraction.

View Article and Find Full Text PDF

is a notorious multidrug resistant bacterium responsible for several hospital acquired infections assisted by its capacity to develop biofilms. BfmR (RstA), a response regulator from the BfmR/S two-component signal transduction system, is the major controller of biofilm development and formation. As a result, BfmR represents a novel target for anti-biofilm treatment against .

View Article and Find Full Text PDF

The linking of polysaccharide in glycoconjugate vaccine with carrier protein is an imperative step to develop a strong memory response. The excessive use of similar carrier protein known to result in bystander immunity warrants an urgent need for new carrier protein. The preparation of the glycoconjugate vaccine using cyanylation chemistry is to link the active cyanate ester site of polysaccharide with the carrier protein.

View Article and Find Full Text PDF

The recent outbreak of SARS-CoV-2 has quickly become a worldwide pandemic and generated panic threats for both the human population and the global economy. The unavailability of effective vaccines or drugs has enforced researchers to hunt for a potential drug to combat this virus. Plant-derived phytocompounds are of applicable interest in the search for novel drugs.

View Article and Find Full Text PDF

The interest in naturally occurring essential oils from medicinal plants has increased extremely over the last decade markedly because they possess antimicrobial and antioxidant protective properties against different chronic diseases. Extensive survival of drug-resistant infectious bacteria depends on quorum sensing (QS) signaling network which raises the need for alternative antibacterial compounds. The aim of this study was to examine the phytochemical compounds of patchouli essential oil (PEO) and to assess its antioxidant activity.

View Article and Find Full Text PDF

Polluted waters are an important reservoir for antibiotic resistance genes and multidrug-resistant bacteria. This report describes the microbial community, antibiotic resistance genes, and the genetic profile of extended spectrum β-lactamase strains isolated from rivers at, Pune, India. ESBL-producing bacteria isolated from diverse river water catchments running through Pune City were characterized for their antibiotic resistance.

View Article and Find Full Text PDF

Biological methods offer eco-friendly and cost-effective alternatives for the synthesis of silver nanoparticles (AgNPs). The present study highlights a green process where AgNPs were synthesized and optimized by using silver nitrate (AgNO) and the aqueous extract of Piper betle (Pbet) leaf as the reducing and capping agent. The stable and optimized process for the synthesis of Pbet-AgNPs was exposure of reaction mixture into the sunlight for 40 min, pH 9.

View Article and Find Full Text PDF

Quorum sensing (QS), the communication signaling network, regulates biofilm formation and several virulence factors in Pseudomonas aeruginosa PAO1, a nosocomial opportunistic pathogen. QS is considered to be a challenging target for compounds antagonistic to virulent factors. Biologically synthesized silver nanoparticles (AgNPs) are reported as anti-QS and anti-biofilm drugs against bacterial infections.

View Article and Find Full Text PDF

We have cloned, characterized and transformed the AtACR2 gene (arsenic reductase 2) of Arabidopsis thaliana into the genome of tobacco (Nicotiana tabacum, var Sumsun). Our results revealed that the transgenic tobacco plants are more tolerant to arsenic than the wild type ones. These plants can grow on culture medium containing 200μM arsenate, whereas the wild type can barely survive under this condition.

View Article and Find Full Text PDF

This study is a part of our long term project on bioremediation of toxic metals and other pollutants for protection of human health and the environment from severe contamination. The information and results presented in this data article are based on both in vitro and in silico experiments. in vitro experiments were used to investigate the presence of arsenic responsive genes in a bacterial strain B1-CDA that is highly resistant to arsenics.

View Article and Find Full Text PDF

Previously, we reported an arsenic resistant bacterium Lysinibacillus sphaericus B1-CDA, isolated from an arsenic contaminated lands. Here, we have investigated its genetic composition and evolutionary history by using massively parallel sequencing and comparative analysis with other known Lysinibacillus genomes. Assembly of the sequencing reads revealed a genome of ~4.

View Article and Find Full Text PDF

Chromium and chromium containing compounds are discharged into the nature as waste from anthropogenic activities, such as industries, agriculture, forest farming, mining and metallurgy. Continued disposal of these compounds to the environment leads to development of various lethal diseases in both humans and animals. In this paper, we report a soil borne bacterium, B2-DHA that can be used as a vehicle to effectively remove chromium from the contaminated sources.

View Article and Find Full Text PDF

The main objective of this study was to identify and isolate arsenic resistant bacteria that can be used for removing arsenic from the contaminated environment. Here we report a soil borne bacterium, B1-CDA that can serve this purpose. B1-CDA was isolated from the soil of a cultivated land in Chuadanga district located in the southwest region of Bangladesh.

View Article and Find Full Text PDF

The current scenario of environmental pollution urges the need for an effective solution for toxic heavy metal removal from industrial wastewater. Bioremediation is the most cost effective process employed by the use of microbes especially bacteria resistant to toxic metals. In this study, Lysinibacillus sp.

View Article and Find Full Text PDF

This paper reports a continuation of our previous research on the phytochelatin synthase1 (PCS1) gene involved in binding and sequestration of heavy metals or metalloids in plant cells. Construction of a 3D structure of the Arabidopsis thaliana PCS1 protein and prediction of gene function by employing iterative implementation of the threading assembly refinement (I-TASSER) revealed that PC ligands (3GC-gamma-glutamylcysteine) and Gln50, Pro53, Ala54, Tyr55, Cys56, Ile102, Gly161, His162, Phe163, Asp204 and Arg211 residues are essential for formation of chelating complex with cadmium (Cd²⁺) or arsenite (AsIII). This finding suggests that the PCS1 protein might be involved in the production of the enzyme phytochelatin synthase, which might in turn bind, localize, store or sequester heavy metals in plant cells.

View Article and Find Full Text PDF

Gold nanoparticles (Au-NPs) were synthesized from chloroauric acid using cell free supernatant of Streptomyces sp. NK52 grown in nutrient broth. These nanoparticles were synthesized by varying pH and temperature of the reaction mixture and chloroauric acid concentration.

View Article and Find Full Text PDF