Publications by authors named "Neelu Batra"

In prostate cancer (PCa), androgens upregulate tumorigenesis, whereas in benign tissue, the revival of androgen receptor (AR) signaling suppresses aggressive behaviors, suggesting therapeutic potential. Dogs, natural PCa models, often lack AR in PCa. We restored AR in dog PCa to investigate resultant characteristics.

View Article and Find Full Text PDF

Synthetic biology constitutes a scientific domain focused on intentional redesign of organisms to confer novel functionalities or create new products through strategic engineering of their genetic makeup. Leveraging the inherent capabilities of nature, one may address challenges across diverse sectors including medicine. Inspired by this concept, we have developed an innovative bioengineering platform, enabling high-yield and large-scale production of biological small interfering RNA (BioRNA/siRNA) agents via bacterial fermentation.

View Article and Find Full Text PDF

Genome-derived microRNAs (miRNAs or miRs) govern posttranscriptional gene regulation and play important roles in various cellular processes and disease progression. While chemo-engineered miRNA mimics or biosimilars made in vitro are widely available and used, miRNA agents produced in vivo are emerging to closely recapitulate natural miRNA species for research. Our recent work has demonstrated the success of high-yield, in vivo production of recombinant miRNAs by using human tRNA (htRNA) fused precursor miRNA (pre-miR) carriers.

View Article and Find Full Text PDF

The multifaceted chemo-immune resistance is the principal barrier to achieving cure in cancer patients. Identifying a target that is critically involved in chemo-immune-resistance represents an attractive strategy to improve cancer treatment. iRhom1 plays a role in cancer cell proliferation and its expression is negatively correlated with immune cell infiltration.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists are researching special molecules called microRNAs (miRNAs) to help treat lung cancer.
  • They found three specific miRNAs, miR-22-3p, miR-9-5p, and miR-218-5p, that can stop cancer cells from growing by messing with how the cells use nutrients like folate.
  • Among these, miR-22-3p was most effective in shrinking tumors in mice without causing harm, helping researchers understand how to use these miRNAs in future cancer treatments.
View Article and Find Full Text PDF

Prostate cancer is initially regulated by the androgen receptor (AR), a ligand-activated, transcription factor, and is in a hormone-dependent state (hormone-sensitive prostate cancer (HSPC)), but eventually becomes androgen-refractory (castration-resistant prostate cancer (CRPC)) because of mechanisms that bypass the AR, including by activation of ErbB3, a member of the epidermal growth factor receptor family. ErbB3 is synthesized in the cytoplasm and transported to the plasma membrane for ligand binding and dimerization, where it regulates downstream signaling, but nuclear forms are reported. Here, we demonstrate in prostatectomy samples that ErbB3 nuclear localization is observed in malignant, but not benign prostate, and that cytoplasmic (but not nuclear) ErbB3 correlated positively with AR expression but negatively with AR transcriptional activity.

View Article and Find Full Text PDF

Background And Objective: Multiple studies have demonstrated the medical potency of plant extracts and specific phytochemicals as therapeutics for prostate cancer (PCa) patients. Of note, the Neem plant known for its role as an antibiotic and anti-inflammatory is underexplored with an untapped potential for further development. This review focuses on extracts and phytochemicals derived from the Neem tree (Latin name; ), commonly used throughout Southeast Asia for the prevention and treatment of a wide array of diseases including cancer.

View Article and Find Full Text PDF

With the understanding of microRNA (miRNA or miR) functions in tumor initiation, progression, and metastasis, efforts are underway to develop new miRNA-based therapies. Very recently, we demonstrated effectiveness of a novel humanized bioengineered miR-124-3p prodrug in controlling spontaneous lung metastasis in mouse models. This study was to investigate the molecular and cellular mechanisms by which miR-124-3p controls tumor metastasis.

View Article and Find Full Text PDF

Research on RNA function and therapeutic potential is dominated by the use of chemoengineered RNA mimics. Recent efforts have led to the establishment of novel technologies for the production of recombinant or bioengineered RNA molecules, which should better recapitulate the structures, functions and safety profiles of natural RNAs because both are produced and folded in living cells. Herein, we describe a robust approach for reproducible fermentation production of bioengineered RNA agents (BERAs) carrying warhead miRNAs, siRNAs, aptamers, or other forms of small RNAs, based upon an optimal hybrid tRNA/pre-miRNA carrier.

View Article and Find Full Text PDF
Article Synopsis
  • Noncoding RNAs (ncRNAs), particularly microRNAs, play key roles in regulating gene expression, but existing research mainly uses synthetic RNA, which doesn't fully mimic natural RNA in living cells.
  • The study developed a platform to produce humanized recombinant ncRNA molecules, called hBERAs, which can effectively carry payloads like miRNAs and siRNAs in bacterial cultures and were shown to be effective in human cancer cell studies and mouse models for osteosarcoma.
  • The innovative bioengineering of ncRNAs, showcasing the hBERAs' ability to enhance apoptosis and inhibit cancer invasiveness, offers new tools for cancer research and drug development.
View Article and Find Full Text PDF
Article Synopsis
  • The study introduces a novel approach using a single recombinant molecule, called "combinatorial BERA" (CO-BERA), to introduce two specific microRNAs (miRNAs) into NSCLC cells, leading to more effective regulation of target genes.
  • Results show that CO-BERA significantly reduces tumor growth in mouse models by suppressing key genes and promoting cancer cell death, suggesting a promising new strategy for treating NSCLC.
View Article and Find Full Text PDF

The coronavirus disease of 2019 (COVID-19) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a global pandemic with increasing incidence and mortality rates. Recent evidence based on the cytokine profiles of severe COVID-19 cases suggests an overstimulation of macrophages and monocytes associated with reduced T-cell abundance (lymphopenia) in patients infected with SARS-CoV-2. The SARS-CoV-2 open reading frame 3 a (ORF3a) protein was found to bind to the human HMOX1 protein at a high confidence through high-throughput screening experiments.

View Article and Find Full Text PDF

Our group and others have previously shown that genistein combined polysaccharide (GCP), an aglycone isoflavone-rich extract with high bioavailability and low toxicity, can inhibit prostate cancer (CaP) cell growth and survival as well as androgen receptor (AR) activity. We now elucidate the mechanism by which this may occur using LNCaP and PC-346C CaP cell lines; GCP can inhibit intracrine androgen synthesis in CaP cells. UPLC-MS/MS and qPCR analyses demonstrated that GCP can mediate a ~3-fold decrease in testosterone levels ( < 0.

View Article and Find Full Text PDF

MicroRNAs (miRNAs or miRs) are small noncoding RNAs derived from genome to control target gene expression. Recently we have developed a novel platform permitting high-yield production of bioengineered miRNA agents (BERA). This study is to produce and utilize novel fully-humanized BERA/miR-328-3p molecule (hBERA/miR-328) to delineate the role of miR-328-3p in controlling nutrient uptake essential for cell metabolism.

View Article and Find Full Text PDF

Genome-derived noncoding RNAs (ncRNAs), including microRNAs (miRNAs), small interfering RNAs (siRNAs), and long noncoding RNAs (lncRNAs), play an essential role in the control of target gene expression underlying various cellular processes, and dysregulation of ncRNAs is involved in the pathogenesis and progression of various diseases in virtually all species including humans. Understanding ncRNA biology has opened new avenues to develop novel RNA-based therapeutics. Presently, ncRNA research and drug development is dominated by the use of ncRNA mimics that are synthesized chemically in vitro and supplemented with extensive and various types of artificial modifications and thus may not necessarily recapitulate the properties of natural RNAs generated and folded in living cells in vivo.

View Article and Find Full Text PDF

miR-127 is downregulated in breast cancer, where it has been shown to suppress the proliferation, migration, and invasion of breast cancer cells. In triple-negative breast cancer (TNBC), miR-127 downregulation correlates with decreased disease-free and overall patient survival. Tumor suppressor miRNAs may hold therapeutic promise but progress has been limited by several factors, including the lability and high cost of miRNA mimics.

View Article and Find Full Text PDF

Drug-metabolizing enzymes, transporters, and nuclear receptors are essential for the absorption, distribution, metabolism, and excretion (ADME) of drugs and xenobiotics. MicroRNAs participate in the regulation of ADME gene expression imperfect complementary Watson-Crick base pairings with target transcripts. We have previously reported that Cytochrome P450 3A4 (CYP3A4) and ATP-binding cassette sub-family G member 2 (ABCG2) are regulated by miR-27b-3p and miR-328-3p, respectively.

View Article and Find Full Text PDF

Noncoding RNAs (ncRNAs), including microRNAs (miRNAs), small interfering RNAs (siRNAs), and long noncoding RNAs (lncRNAs), regulate target gene expression and can be used as tools for understanding biological processes and identifying new therapeutic targets. Currently, ncRNA molecules for research and therapeutic use are limited to ncRNA mimics made by chemical synthesis. We have recently established a high-yield and cost-effective method of producing bioengineered or biologic ncRNA agents (BERAs) through bacterial fermentation, which is based on a stable tRNA/pre-miR-34a carrier (~ 180 nt) that accommodates target small RNAs.

View Article and Find Full Text PDF

Noncoding RNAs (ncRNAs) produced in live cells may better reflect intracellular ncRNAs for research and therapy. Attempts were made to produce biologic ncRNAs, but at low yield or success rate. Here we first report a new ncRNA bioengineering technology using more stable ncRNA carrier (nCAR) containing a pre-miR-34a derivative identified by rational design and experimental validation.

View Article and Find Full Text PDF

Gallic acid (GA), a key intermediate in the synthesis of plant hydrolysable tannins, is also a primary anti-inflammatory, cardio-protective agent found in wine, tea, and cocoa. In this publication, we reveal the identity of a gene and encoded protein essential for GA synthesis. Although it has long been recognized that plants, bacteria, and fungi synthesize and accumulate GA, the pathway leading to its synthesis was largely unknown.

View Article and Find Full Text PDF