Multimodal cancer therapies are often required for progressive cancers due to the high persistence and mortality of the disease and the negative systemic side effects of traditional therapeutic methods. Thus, the development of less invasive modalities for recurring treatment cycles is of clinical significance. Herein, a light-activatable microparticle system was developed for localized, pulsatile delivery of anticancer drugs with simultaneous thermal ablation by applying controlled ON-OFF thermal cycles using near-infrared laser irradiation.
View Article and Find Full Text PDFCancer therapy research is of high interest because of the persistence and mortality of the disease and the side effects of traditional therapeutic methods, while often multimodal treatments are necessary based on the patient's needs. The development of less invasive modalities for recurring treatment cycles is thus of critical significance. Herein, a light-activatable microparticle system was developed for localized, pulsatile delivery of anticancer drugs with simultaneous thermal ablation, by applying controlled ON-OFF thermal cycles using near-infrared laser irradiation.
View Article and Find Full Text PDFAbstract: In the past two decades, the emergence of nanomaterials for biomedical applications has shown tremendous promise for changing the paradigm of all aspects of disease management. Nanomaterials are particularly attractive for being a modularly tunable system; with the ability to add functionality for early diagnostics, drug delivery, therapy, treatment and monitoring of patient response. In this review, a survey of the landscape of different classes of nanomaterials being developed for applications in diagnostics and imaging, as well as for the delivery of prophylactic vaccines and therapeutics such as small molecules and biologic drugs is undertaken; with a particular focus on COVID-19 diagnostics and vaccination.
View Article and Find Full Text PDFShort-wave infrared (SWIR, 900-1700 nm) enables in vivo imaging with high spatiotemporal resolution and penetration depth due to the reduced tissue autofluorescence and decreased photon scattering at long wavelengths. Although small organic SWIR dye molecules have excellent biocompatibility, they have been rarely exploited as compared to their inorganic counterparts, mainly due to their low quantum yield. To increase their brightness, in this work, the SWIR dye molecules are placed in close proximity to gold nanorods (AuNRs) for surface plasmon-enhanced emission.
View Article and Find Full Text PDFFluorescence imaging is a powerful tool for studying biologically relevant macromolecules, but its applicability is often limited by the fluorescent probe, which must demonstrate both high site-specificity and emission efficiency. In this regard, M13 virus, a versatile biological scaffold, has previously been used to both assemble fluorophores on its viral capsid with molecular precision and to also target a variety of cells. Although M13-fluorophore systems are highly selective, these complexes typically suffer from poor molecular detection limits due to low absorption cross-sections and moderate quantum yields.
View Article and Find Full Text PDFImproved cytoreductive surgery for advanced stage ovarian cancer (OC) represents a critical challenge in the treatment of the disease. Optimal debulking reaching no evidence of macroscopic disease is the primary surgical end point with a demonstrated survival advantage. Targeted molecule-based fluorescence imaging offers complete tumor resection down to the microscopic scale.
View Article and Find Full Text PDFDetection of biological features at the cellular level with sufficient sensitivity in complex tissue remains a major challenge. To appreciate this challenge, this would require finding tens to hundreds of cells (a 0.1 mm tumor has ~125 cells), out of ~37 trillion cells in the human body.
View Article and Find Full Text PDFCell-intrinsic reporters such as luciferase (LUC) and red fluorescent protein (RFP) have been commonly utilized in preclinical studies to image tumor growth and to monitor therapeutic responses. While extrinsic reporters that emit near infrared I (NIR-I: 650-950 nm) or near-infrared II (NIR-II: 1000-1700 nm) optical signals have enabled minimization of tissue autofluorescence and light scattering, it has remained unclear as to whether their use has afforded more accurate tumor imaging in small animals. Here, we developed a novel optical imaging construct comprised of rare earth lanthanide nanoparticles coated with biodegradable diblock copolymers and doped with organic fluorophores, generating NIR-I and NIR-II emissive bands upon optical excitation.
View Article and Find Full Text PDFWith the global rise in incidence of cancer and infectious diseases, there is a need for the development of techniques to diagnose, treat, and monitor these conditions. The ability to efficiently capture and isolate cells and other biomolecules from peripheral whole blood for downstream analyses is a necessary requirement. Graphene oxide (GO) is an attractive template nanomaterial for such biosensing applications.
View Article and Find Full Text PDFPeripheral blood can provide valuable information on an individual's immune status. Cell-based assays typically target leukocytes and their products. Characterization of leukocytes from whole blood requires their separation from the far more numerous red blood cells.
View Article and Find Full Text PDFWith the rise in antibiotic-resistant infections, non-invasive sensing of infectious diseases is increasingly important. Optical imaging, although safer and simpler, is less developed than other modalities such as radioimaging, due to low availability of target-specific molecular probes. Here we report carbon nanotubes (SWNTs) as bacterial probes for fluorescence imaging of pathogenic infections.
View Article and Find Full Text PDFChemical functionalization of graphene is promising for a variety of next-generation technologies. Although graphene oxide (GO) is a versatile material in this direction, its use is limited by the production of metastable, chemically inhomogeneous and spatially disordered GO structures under current synthetic protocols, which results in poor optoelectronic properties. Here, we present a mild thermal annealing procedure, with no chemical treatments involved, to manipulate as-synthesized GO on a large scale to enhance sheet properties with the oxygen content preserved.
View Article and Find Full Text PDFWe report a first method for using M13 bacteriophage as a multifunctional scaffold for optically imaging bacterial infections in vivo. We demonstrate that M13 virus conjugated with hundreds of dye molecules (M13-Dye) can target and distinguish pathogenic infections of F-pili expressing and F-negative strains of E. coli.
View Article and Find Full Text PDFIn this paper, we report a novel method for the synthesis of L-Lysine (lys) amino acid coated maghemite (gamma-Fe2O3) magnetic nanoparticles (MNPs). The facile and cost effective method permitted preparation of the high-quality superparamagnetic gamma-Fe2O3 MNPs with hydrophilic and biocompatible nature. For this work, first we synthesized magnetite phase Fe3O4/lys by wet chemical method and oxidized to y-Fe2O3 in controlled oxidizing environment, as evidenced by XRD and VSM magnetometry.
View Article and Find Full Text PDF