Publications by authors named "Neelima Ayyalasomayajula"

Exposure to lead (Pb), an environmental pollutant, is closely associated with the development of neurodegenerative disorders through oxidative stress induction and alterations in mitochondrial function. Damaged mitochondria could be one of the reasons for the progression of Alzheimer's Disease (AD). Mitophagy is vital in keeping the cell healthy.

View Article and Find Full Text PDF

Lead (Pb) is a multimedia contaminant with various pathophysiological consequences, including cognitive decline and neural abnormalities. Recent findings have reported an association of Pb toxicity with Alzheimer's disease (AD). Studies have revealed that mitochondrial dysfunction is a pathological characteristic of AD.

View Article and Find Full Text PDF

The developmental, epigenetic, and epidemiological studies on lead (Pb) toxicity have reported a strong connection between lead exposure and the progression of Alzheimer's disease (AD). The amyloid peptides were the main triggering elements, in the generation of extracellular plaques through which multiple cellular signaling events such as apoptosis and primarily oxidant-antioxidant balancing system will be affected, which leads to neuronal cell death. Our previous studies indicated that epigallocatechin gallate (EGCG), abundantly present in green tea, was found to be effective in alleviating the metal-induced neurotoxicity at the cellular level in terms of cell viability and apoptosis The aim of this study was to explore the protective mechanism of EGCG on the markers of oxidant-antioxidant system and mitochondria, which are involved in metal-induced neuronal cell death.

View Article and Find Full Text PDF

Environmental pollutant, Lead (Pb) is known to induce neurotoxicity in human. The central nervous system is the most vulnerable to the minute levels of Pb induced toxicity. Pb has been linked to Alzheimer's disease (AD) as a probable risk factor, as it shows epigenetic and developmental link associated with Alzheimer's disease-like pathology.

View Article and Find Full Text PDF

Environmental exposure to lead (Pb) is reported to associate with the development of Alzheimer's disease, where the formation of β-amyloid peptides (APs) of (1-40), (1-42), and (25-35) is considered as the major risk factor. In this context, we aimed at investigating the effect of epigallocatechin gallate (EGCG), a major flavonoid polyphenol available in green tea, in mitigating the individual and combined toxicity generated by Pb and β-APs in terms of oxidative stress and apoptosis in human neuronal cells. SH-SY5Y cells were exposed to Pb and β-APs of (1-40) and (25-35) individually and in different combinations in the presence and absence of EGCG.

View Article and Find Full Text PDF

Lead (Pb) is a toxic pollutant known to cause several abnormalities related to the brain, including cognitive dysfunction, and it is ubiquitous in nature. β-amyloid peptides (AP) are crucially involved in Alzheimer's disease (AD). It has been reported that there is a connection between lead and amyloid peptides in exerting similar kinds of altered functions in the brain and long-term exposure to lead leads ultimately to increased beta amyloid formation in the brain, lethal to human brain cells.

View Article and Find Full Text PDF

The formation of β amyloid plaques is one of the pathological hallmarks of Alzheimer's disease (AD). The process of accumulation of extracellular deposits of amyloid plaques occurs by the abnormal proteolysis of amyloid precursor protein, resulting in the formation of β amyloid peptides which further aggregates and results in the formation of oligomers, protofibrils, fibrils, and plaques. The complexity in understanding the aggregation process has provided avenues for identifying potential targets against amyloid toxicity in the treatment of AD.

View Article and Find Full Text PDF