Publications by authors named "Neelava Sengupta"

Recent progress in a noninvasive brain data sampling technology has facilitated simultaneous sampling of multiple modalities of brain data, such as functional magnetic resonance imaging, electroencephalography, diffusion tensor imaging, and so on. In spite of the potential benefits from integrating predictive modeling of multiple modality brain data, this area of research remains mostly unexplored due to a lack of methodological advancements. The difficulty in fusing multiple modalities of brain data within a single model lies in the heterogeneous temporal and spatial characteristics of the data sources.

View Article and Find Full Text PDF

The paper describes a new type of evolving connectionist systems (ECOS) called evolving spatio-temporal data machines based on neuromorphic, brain-like information processing principles (eSTDM). These are multi-modular computer systems designed to deal with large and fast spatio/spectro temporal data using spiking neural networks (SNN) as major processing modules. ECOS and eSTDM in particular can learn incrementally from data streams, can include 'on the fly' new input variables, new output class labels or regression outputs, can continuously adapt their structure and functionality, can be visualised and interpreted for new knowledge discovery and for a better understanding of the data and the processes that generated it.

View Article and Find Full Text PDF

Standard molecular experimental methodologies and mathematical procedures often fail to answer many phylogeny and classification related issues. Modern artificial intelligent-based techniques, such as radial basis function, genetic algorithm, artificial neural network, and support vector machines are of ample potential in this regard. Reliance on a large number of essential parameters will aid in enhanced robustness, reliability, and better accuracy as opposed to single molecular parameter.

View Article and Find Full Text PDF