Plants produce flavonol compounds for vital functions regarding plant growth, fruit and flower colouring as well as fruit ripening processes. Several of these biosynthesis steps are stereo- and regioselective and are being carried out by nonheme iron enzymes. Using density functional theory calculations on a large active site model complex of flavanone-3β-hydroxylase (FHT), we established the mechanism for conversion of naringenin to its dihydroflavonol, which is a key step in the mechanism of flavonol biosynthesis.
View Article and Find Full Text PDFBackground: Alpha-amylases hydrolyze 1,4 α-glycosidic bonds of starch and produce malto-oligosaccharides. It is an important enzyme generally applied in textile, food and brewing industries. Enhancement in thermal stability and productivity of enzymes are the two most sought after properties for industrial use.
View Article and Find Full Text PDFWe report the development of effective drug loaded nanocarriers to combat multidrug resistant infection especially in case of osteomyelitis. The hollow mesoporous hydroxyapatite nanoparticles (hmHANPs) and solid/non-hollow hydroxyapatite nanoparticles (sHANPs) were synthesized by core-shell and co-precipitation techniques respectively. High encapsulation of the drug (ciprofloxacin) was observed in hmHANPs as compared to sHANPs, which may be due to the hollow porous structure of hmHANPs.
View Article and Find Full Text PDF