Publications by authors named "Neelam Tejpal"

Macrophages play an important role in immune responses including allograft rejection and they are one of the potential targets of anti-rejection therapies in organ transplantation. Macrophage alloreactivity relies on their phenotype/polarity, motility, phagocytosis and matrix degradation, which in turn depend on proper functioning of actin cytoskeleton and its regulators, the small GTPase RhoA and its downstream effector the Rho-associated protein kinase (ROCK). Several laboratories showed that administration of ROCK inhibitor Y-27632 to the graft recipient inhibits chronic rejection or rodent cardiac allografts.

View Article and Find Full Text PDF

The osteoblast-specific hormone osteocalcin (OC) was found to regulate glucose metabolism, fat mass, and β-cell proliferation in mice. Here, we investigate the effect of decarboxylated OC (D-OC) on human β-cell function and mass in culture and in vivo using a Nonobese diabetic-severe combined immunodeficiency mouse model. We found that D-OC at dose ranges from 1.

View Article and Find Full Text PDF

Background: Current immunosuppressive regimens fail to avert chronic rejection (CR) of transplanted organs; however, selective targeting of actin-cytoskeletal regulators decreases T-cell motility and abrogates CR in rat model system. Administration of mutated class I major histocompatibility complex molecules or selective targeting of the RhoA pathway, which controls T-cell cytoskeletal activity, using Y27632 (a selective Rock1 inhibitor) resulted in reduced T-cell infiltration and abrogation of CR as judged from the neointimal index (13.9±19.

View Article and Find Full Text PDF

The translationally controlled tumor protein (TCTP) plays a role in cell growth, cell cycle and cancer progression. TCTP controls negatively the stability of the p53 tumor suppressor protein and interacts with the cellular cytoskeleton. The deregulation of the actin and cytokeratin cytoskeleton is responsible for the increased migratory activity of tumor cells and is linked with poor patient outcome.

View Article and Find Full Text PDF

United States Food and Drug Administration (FDA) in 2010 approved the use of immunosuppressant drug everolimus, which requires therapeutic drug monitoring in whole blood. Taking advantage of structural similarity between sirolimus and everolimus we attempted to rapidly estimate everolimus concentration from apparent sirolimus concentration obtained by using Architect sirolimus immunoassay and mathematical equations (both polynomial and linear). Mathematical equations were derived by curve-fitting methods based on observed apparent sirolimus concentration and true everolimus concentration determined by a liquid chromatography combined with mass spectrometry (LC/MS) method using eight everolimus standards (concentration range 1-30 ng/mL) prepared in whole blood.

View Article and Find Full Text PDF

Background: Dendritic cells are professional antigen presenting cells that perform antigen processing and antigen presentation functions and rely on the proper functioning and distribution of the endoplasmic reticulum (ER) and Golgi apparatus and of vesicular trafficking pathways. We previously developed a model system to study the mechanisms governing inhibition of chronic rejection of heart allografts.

Methods: Heterotopic cardiac transplants were placed intra-abdominally and the major histocompatibility class (MHC) class I allochimeric molecule, [α1h1/u]-RT1.

View Article and Find Full Text PDF

Proper actin cytoskeleton architecture and dynamics are indispensable for events in the immunological response such as T cell migration, redistribution of T cell receptors, and interaction with antigen presenting cells. Thus, T cell activation, downstream signaling events and effector functions are all actin-dependent. Actin cytoskeleton architecture and dynamics are regulated by proteins belonging to the superfamily of small GTP-binding proteins, such as RhoA GTPase.

View Article and Find Full Text PDF

Background: The allochimeric MHC class I molecule [alpha1h1/u]-RT1.Aa that contains donor-type (Wistar Furth, WF; RT1u) epitopes displayed on recipient-type (ACI, RT1a) administered in conjunction with sub-therapeutic dose of cyclosporine (CsA) induces indefinite survival of heterotopic cardiac allografts in rat model. In vascularized transplantation models, the spleen contributes to graft rejection by generating alloantigen reactive T cells.

View Article and Find Full Text PDF

The MHC class I allochimeric protein containing donor-type epitopes on recipient-type heavy chains induces indefinite survival of heterotopic cardiac allografts in rats. We analyzed gene expression profile of heart allograft tissue. Mutated peptide [alpha1h1/u]-RT1.

View Article and Find Full Text PDF

STATs play key roles in immune function. We examined the role of STAT5a/b in allograft rejection. STAT5a/b-deficient mice showed a 4-fold increased survival time of heart allografts (p < 0.

View Article and Find Full Text PDF

JAK3 is a cytoplasmic tyrosine kinase with limited tissue expression but is readily found in activated T cells. Patients lacking JAK3 are immune compromised, suggesting that JAK3 represents a therapeutic target for immunosuppression. Herein, we show that a Mannich base, NC1153, blocked IL-2-induced activation of JAK3 and its downstream substrates STAT5a/b more effectively than activation of the closely related prolactin-induced JAK2 or TNF-alpha-driven NF-kappaB.

View Article and Find Full Text PDF

Background: The various toxicities associated with the general immune suppression resulting from current clinical immunosuppressive therapies continue to plague transplant recipients as well as jeopardize allograft survival.

Methods: The present study utilized allochimeric class I MHC antigens (alpha1hu70-77-RT1.Aa) bearing only four donor RT1.

View Article and Find Full Text PDF

Janus kinase 3 (Jak3) is a cytoplasmic tyrosine (Tyr) kinase associated with the interleukin-2 (IL-2) receptor common gamma chain (gamma(c)) that is activated by multiple T-cell growth factors (TCGFs) such as IL-2, -4, and -7. Using human T cells, it was found that a recently discovered variant of the undecylprodigiosin family of antibiotics, PNU156804, previously shown to inhibit IL-2-induced cell proliferation, also blocks IL-2-mediated Jak3 auto-tyrosine phosphorylation, activation of Jak3 substrates signal transducers and activators of transcription (Stat) 5a and Stat5b, and extracellular regulated kinase 1 (Erk1) and Erk2 (p44/p42). Although PNU156804 displayed similar efficacy in blocking Jak3-dependent T-cell proliferation by IL-2, -4, -7, or -15, it was more than 2-fold less effective in blocking Jak2-mediated cell growth, its most homologous Jak family member.

View Article and Find Full Text PDF