Publications by authors named "Neelakshi Soni"

Background: In Alzheimer's disease (AD), microglia surround extracellular plaques and mount a sustained inflammatory response, contributing to the pathogenesis of the disease. Identifying approaches to specifically target plaque-associated microglia (PAMs) without interfering in the homeostatic functions of non-plaque associated microglia would afford a powerful tool and potential therapeutic avenue.

Methods: Here, we demonstrated that a systemically administered nanomedicine, hydroxyl dendrimers (HDs), can cross the blood brain barrier and are preferentially taken up by PAMs in a mouse model of AD.

View Article and Find Full Text PDF
Article Synopsis
  • Alzheimer's disease (AD) is complex, involving genetic factors that influence the risk and resilience to the disorder, yet the effect of genetic diversity on preclinical AD is underexplored.
  • A study was conducted using diverse mouse strains crossed with mice carrying a specific AD transgene to examine various neurological and genetic responses as the mice aged.
  • Results indicated that greater genetic diversity contributes to reducing amyloid plaque formation and neuronal damage, highlighting the significance of this diversity in studying resilience against AD and its similarities to human disease models.
View Article and Find Full Text PDF

Previous studies suggest that microglial-expressed Apolipoprotein E (ApoE) is necessary to shift microglia into a neurodegenerative transcriptional state in Alzheimer's disease (AD) mouse models. On the other hand, elimination of microglia shifts amyloid beta (Aβ) accumulation from parenchymal plaques to cerebral amyloid angiopathy (CAA), mimicking the effects of global APOE*4 knock-in. Here, we specifically knock-out microglial-expressed ApoE while keeping astrocytic-expressed ApoE intact.

View Article and Find Full Text PDF

Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia is an autosomal dominant neurodegenerative disease caused by mutations in colony-stimulating factor 1 receptor (CSF1R). We sought to identify the role of microglial CSF1R haploinsufficiency in mediating pathogenesis. Using an inducible - system, we found that postdevelopmental, microglia-specific haploinsufficiency resulted in reduced expression of homeostatic microglial markers.

View Article and Find Full Text PDF

Microglia, the brain's resident myeloid cells, play central roles in brain defense, homeostasis, and disease. Using a prolonged colony-stimulating factor 1 receptor inhibitor (CSF1Ri) approach, we report an unprecedented level of microglial depletion and establish a model system that achieves an empty microglial niche in the adult brain. We identify a myeloid cell that migrates from the subventricular zone and associated white matter areas.

View Article and Find Full Text PDF

Background: Microglia, the primary resident myeloid cells of the brain, play critical roles in immune defense by maintaining tissue homeostasis and responding to injury or disease. However, microglial activation and dysfunction has been implicated in a number of central nervous system (CNS) disorders, thus developing tools to manipulate and replace these myeloid cells in the CNS is of therapeutic interest.

Methods: Using whole body irradiation, bone marrow transplant, and colony-stimulating factor 1 receptor inhibition, we achieve long-term and brain-wide (~ 80%) engraftment and colonization of peripheral bone marrow-derived myeloid cells (i.

View Article and Find Full Text PDF

Huntington's disease is associated with a reactive microglial response and consequent inflammation. To address the role of these cells in disease pathogenesis, we depleted microglia from R6/2 mice, a rapidly progressing model of Huntington's disease marked by behavioural impairment, mutant huntingtin (mHTT) accumulation, and early death, through colony-stimulating factor 1 receptor inhibition (CSF1Ri) with pexidartinib (PLX3397) for the duration of disease. Although we observed an interferon gene signature in addition to downregulated neuritogenic and synaptic gene pathways with disease, overt inflammation was not evident by microglial morphology or cytokine transcript levels in R6/2 mice.

View Article and Find Full Text PDF