Publications by authors named "Neel Guha"

Feature attribution, the ability to localize regions of the input data that are relevant for classification, is an important capability for ML models in scientific and biomedical domains. Current methods for feature attribution, which rely on "explaining" the predictions of end-to-end classifiers, suffer from imprecise feature localization and are inadequate for use with small sample sizes and high-dimensional datasets due to computational challenges. We introduce prospector heads, an efficient and interpretable alternative to explanation-based attribution methods that can be applied to any encoder and any data modality.

View Article and Find Full Text PDF