Publications by authors named "Nederlof R"

Limited information is available concerning the termination of pregnancy in non-human primates. Thus, a comprehensive review of this topic will be beneficial for veterinary staff in laboratories, zoos, and wildlife rehabilitation centers. The most relevant studies concerning the termination of viable and non-viable pregnancy in non-human primates were analyzed, and dosages, administration routes, adverse effects, and the efficacy of the drugs used are reported.

View Article and Find Full Text PDF
Article Synopsis
  • High salt (HS) intake can worsen immune responses and contribute to the development of hypertensive vascular diseases, particularly after exposure to Ang II, a hormone that raises blood pressure.
  • In experiments with mice, a short period of HS consumption led to increased inflammation and a higher occurrence of severe vascular issues when combined with Ang II infusion, despite no blood pressure differences between groups.
  • The study concludes that transient HS intake triggers a mild immune response that becomes problematic when followed by Ang II exposure, suggesting that HS acts as a precursor to more significant hypertension-related health risks.
View Article and Find Full Text PDF

This review summarizes the current understanding of how brevetoxins, produced by during harmful algal blooms, impact sea turtle health. Sea turtles may be exposed to brevetoxins through ingestion, inhalation, maternal transfer, and potentially absorption through the skin. Brevetoxins bind to voltage-gated sodium channels in the central nervous system, disrupting cellular function and inducing neurological symptoms in affected sea turtles.

View Article and Find Full Text PDF

Decreased nicotinamide adenine dinucleotide (NAD) levels contribute to various pathologies such as ageing, diabetes, heart failure and ischemia-reperfusion injury (IRI). Nicotinamide riboside (NR) has emerged as a promising therapeutic NAD precursor due to efficient NAD elevation and was recently shown to be the only agent able to reduce cardiac IRI in models employing clinically relevant anesthesia. However, through which metabolic pathway(s) NR mediates IRI protection remains unknown.

View Article and Find Full Text PDF

Marmosets are routinely used in biomedical research, therefore there is an increasing need for updated reference intervals calculated using a large sample size, correct statistics, and considering different variables. Hematological and biochemical values from 472 healthy common marmosets sedated with alphaxalone were collected over a ten-year period (2013-2023). The variables assumed to have influenced the blood-based parameters were compared, i.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in a zoological institution were initially reported in March 2020. Since then, at least 94 peer-reviewed cases have been reported in zoos worldwide. Among the affected animals, nonhuman primates, carnivores, and artiodactyls appear to be most susceptible to infection, with the Felidae family accounting for the largest number of reported cases.

View Article and Find Full Text PDF

Disruption of the immune system during embryonic brain development by environmental chemicals was proposed as a possible cause of neurodevelopmental disorders. We previously found adverse effects of di-n-octyltin dichloride (DOTC) on maternal and developing immune systems of rats in an extended one-generation reproductive toxicity study according to the OECD 443 test guideline. We hypothesize that the DOTC-induced changes in the immune system can affect neurodevelopment.

View Article and Find Full Text PDF

Although p38 MAP Kinase α (p38 MAPKα) is generally accepted to play a central role in the cardiac stress response, to date its function in maladaptive cardiac hypertrophy is still not unambiguously defined. To induce a pathological type of cardiac hypertrophy we infused angiotensin II (AngII) for 2 days via osmotic mini pumps in control and tamoxifen-inducible, cardiomyocyte (CM)-specific p38 MAPKα KO mice (iCMp38αKO) and assessed cardiac function by echocardiography, complemented by transcriptomic, histological, and immune cell analysis. AngII treatment after inactivation of p38 MAPKα in CM results in left ventricular (LV) dilatation within 48 h (EDV: BL: 83.

View Article and Find Full Text PDF

Acute myocardial infarction (MI) induces an extensive sterile inflammation, which is dominated in the early phase by invading neutrophils and monocytes/macrophages. The inflammatory response after MI critically affects infarct healing and cardiac remodeling. Therefore, modulation of cardiac inflammation may improve outcome post MI.

View Article and Find Full Text PDF

Cardioprotective strategies against ischemia-reperfusion injury (IRI) that remain effective in the clinical arena need to be developed. Therefore, maintained efficacy of cardioprotective strategies in the presence of drugs routinely used clinically (e.g.

View Article and Find Full Text PDF

Purpose: Sonlicromanol is a phase IIB clinical stage compound developed for treatment of mitochondrial diseases. Its active component, KH176m, functions as an antioxidant, directly scavenging reactive oxygen species (ROS), and redox activator, boosting the peroxiredoxin-thioredoxin system. Here, we examined KH176m's potential to protect against acute cardiac ischemia-reperfusion injury (IRI), compare it with the classic antioxidant N-(2-mercaptopropionyl)-glycine (MPG), and determine whether protection depends on duration (severity) of ischemia.

View Article and Find Full Text PDF

Background: NOD-like receptors (NLR) are intracellular sensors of the innate immune system, with the NLRP3 being a pro-inflammatory member that modulates cardiac ischemia-reperfusion injury (IRI) and metabolism. No information is available on a possible role of anti-inflammatory NLRs on IRI and metabolism in the intact heart. Here we hypothesize that the constitutively expressed, anti-inflammatory mitochondrial NLRX1, affects IRI and metabolism of the isolated mouse heart.

View Article and Find Full Text PDF

Aims: Sodium glucose cotransporter 2 (SGLT2) inhibitors have sodium-hydrogen exchanger (NHE) inhibition properties in isolated cardiomyocytes, but it is unknown whether these properties extend to the intact heart during ischaemia-reperfusion (IR) conditions. NHE inhibitors as Cariporide delay time to onset of contracture (TOC) during ischaemia and reduce IR injury. We hypothesized that, in the ex vivo heart, Empagliflozin (Empa) mimics Cariporide during IR by delaying TOC and reducing IR injury.

View Article and Find Full Text PDF
Article Synopsis
  • Insulin-like growth factor 1 (IGF1) plays a crucial role in enhancing growth and metabolism in cells and demonstrates cardio-protective properties after acute myocardial infarction (AMI).
  • A study showed that short-term IGF1 treatment improved heart function, reduced scar size, and increased capillary density in heart tissue over several weeks following AMI.
  • The protective effects of IGF1 were linked to its impact on myeloid cells and the promotion of an anti-inflammatory response in macrophages, suggesting it helps modulate inflammation to preserve heart function after injury.
View Article and Find Full Text PDF

Although echocardiography is commonly used to analyze cardiac function in small animal models of cardiac remodeling after myocardial infarction, the different echocardiographic methods are validated poorly. End-diastolic volume, end-systolic volume and ejection fraction were analyzed using either standard single-plane analysis from parasternal long-axis B-mode views (PSLAX) or the bi-plane Simpson method (using PSLAX and three short-axis views) and validated using magnetic resonance imaging as standard. Ejection fraction measured by PSLAX was moderately correlated with a coefficient of R = 0.

View Article and Find Full Text PDF

Aims: Mitochondrial fatty acid oxidation (FAO) is an important energy provider for cardiac work and changes in cardiac substrate preference are associated with different heart diseases. Carnitine palmitoyltransferase 1B (CPT1B) is thought to perform the rate limiting enzyme step in FAO and is inhibited by malonyl-CoA. The role of CPT1B in cardiac metabolism has been addressed by inhibiting or decreasing CPT1B protein or after modulation of tissue malonyl-CoA metabolism.

View Article and Find Full Text PDF

Both the absence of cyclophilin D (CypD) and the presence of mitochondrial bound hexokinase II (mtHKII) protect the heart against ischemia/reperfusion (I/R) injury. It is unknown whether CypD determines the amount of mtHKII in the heart. We examined whether CypD affects mtHK in normoxic, ischemic and preconditioned isolated mouse hearts.

View Article and Find Full Text PDF

Objective: Cardiac hexokinase II (HKII) can translocate between cytosol and mitochondria and change its cellular expression with pathologies such as ischemia-reperfusion, diabetes and heart failure. The cardiac metabolic consequences of these changes are unknown. Here we measured energy substrate utilization in cytosol and mitochondria using stabile isotopes and oxygen consumption of the intact perfused heart for 1) an acute decrease in mitochondrial HKII (mtHKII), and 2) a chronic decrease in total cellular HKII.

View Article and Find Full Text PDF

Background: Remote ischemic preconditioning (RIPC) efficacy is debated. Possibly, because propofol, which has a RIPC-inhibiting action, is used in most RIPC trials. It has been suggested that clinical efficacy is, however, present with volatile anesthesia in the absence of propofol, although this is based on one phase 1 trial only.

View Article and Find Full Text PDF
Article Synopsis
  • Ischemia/reperfusion (I/R) injury in the heart becomes harmful when ischemic conditions last about 20 minutes or longer, and mitochondrial bound hexokinase II (mtHKII) plays a protective role against this injury.
  • A study investigated whether reducing mtHKII during a non-injurious I/R period could trigger the transition to injurious I/R, exploring potential causes such as increased reactive oxygen species (ROS) and changes in heart energetics.
  • Results showed that treatment with TAT-HKII, which detaches HKII from mitochondria, led to significant heart damage, marked by increased LDH release and decreased function recovery, alongside elevated ROS levels during ischemia and reperfusion.
View Article and Find Full Text PDF

Background: During coronary artery bypass graft (CABG) surgery, ischaemia and reperfusion damage myocardial tissue, and increased postoperative plasma troponin concentration is associated with a worse outcome. We investigated whether metformin pretreatment limits cardiac injury, assessed by troponin concentrations, during CABG surgery in patients without diabetes.

Methods: We did a placebo-controlled, double-blind, single-centre study in an academic hospital in Nijmegen (Netherlands) in adult patients without diabetes undergoing an elective on-pump CABG procedure.

View Article and Find Full Text PDF

Mitochondrially bound hexokinase II (mtHKII) has long been known to confer cancer cells with their resilience against cell death. More recently, mtHKII has emerged as a powerful protector against cardiac cell death. mtHKII protects against ischaemia-reperfusion (IR) injury in skeletal muscle and heart, attenuates cardiac hypertrophy and remodelling, and is one of the major end-effectors through which ischaemic preconditioning protects against myocardial IR injury.

View Article and Find Full Text PDF

Diabetes mellitus (DM) has been reported to alter the cardiac response to ischemia-reperfusion (IR). In addition, cardioprotection induced by ischemic preconditioning (IPC) is often impaired in diabetes. We have previously shown that the subcellular localisation of the glycolytic enzyme hexokinase (HK) is causally related to IR injury and IPC protective potential.

View Article and Find Full Text PDF

Rationale: We have shown that partial dissociation of hexokinase II (HKII) from mitochondria in the intact heart using low-dose transactivating transcriptional factor (TAT)-HKII (200 nmol/L) prevents the cardioprotective effects of ischemic preconditioning, whereas high-dose TAT-HKII (10 μmol/L) administration results in rapid myocardial dysfunction, mitochondrial depolarization, and disintegration. In this issue of Circulation Research, Pasdois et al argue that the deleterious effects of TAT-HKII administration on cardiac function are likely because of vasoconstriction and ensuing ischemia.

Objective: To investigate whether altered vascular function and ensuing ischemia recapitulate the deleterious effects of TAT-HKII in intact myocardium.

View Article and Find Full Text PDF