Publications by authors named "Nedal T Nassar"

Global resource extraction raises concerns about environmental pressures and the security of mineral supply. Strategies to address these concerns depend on robust information on natural resource endowments, and on suitable methods to monitor and model their changes over time. However, current mineral resources and reserves reporting and accounting workflows are poorly suited for addressing mineral depletion or answering questions about the long-term sustainable supply.

View Article and Find Full Text PDF

The quantity of ore mined and waste rock (i.e., overburden or barren rock) removed to produce a refined unit of a mineral commodity, its rock-to-metal ratio (RMR), is an important metric for understanding mine wastes and environmental burdens.

View Article and Find Full Text PDF

Trade tensions, resource nationalism, and various other factors are increasing concerns regarding the supply reliability of nonfuel mineral commodities. This is especially the case for commodities required for new and emerging technologies ranging from electric vehicles to wind turbines. In this analysis, we use a conventional risk-modeling framework to develop and apply a new methodology for assessing the supply risk to the U.

View Article and Find Full Text PDF

Historically, resource conflicts have often centered on fuel minerals (particularly oil). Future resource conflicts may, however, focus more on competition for nonfuel minerals that enable emerging technologies. Whether it is rhenium in jet engines, indium in flat panel displays, or gallium in smart phones, obscure elements empower smarter, smaller, and faster technologies, and nations seek stable supplies of these and other nonfuel minerals for their industries.

View Article and Find Full Text PDF

Because modern technology depends on reliable supplies of a wide variety of materials, and because of increasing concern about those supplies, a comprehensive methodology has been created to quantify the degree of criticality of the metals of the periodic table. In this paper, we apply this methodology to the elements of the geological copper family: Cu, As, Se, Ag, Te, and Au. These elements are technologically important, but show a substantial variation in different factors relating to their supply risk, vulnerability to supply restriction, and environmental implications.

View Article and Find Full Text PDF

A comprehensive methodology has been created to quantify the degree of criticality of the metals of the periodic table. In this paper, we present and discuss the methodology, which is comprised of three dimensions: supply risk, environmental implications, and vulnerability to supply restriction. Supply risk differs with the time scale (medium or long), and at its more complex involves several components, themselves composed of a number of distinct indicators drawn from readily available peer-reviewed indexes and public information.

View Article and Find Full Text PDF