Publications by authors named "Nedaie H"

Purpose: Kilovoltage cone beam computed tomography (kVCBCT)-guided adaptive radiation therapy (ART) uses daily deformed CT (dCT), which is generated automatically through deformable registration methods. These registration methods may perform poorly in reproducing volumes of the target organ, rectum, and bladder during treatment. We analyzed the registration errors between the daily kVCBCTs and corresponding dCTs for these organs using the default optical flow algorithm and two registration procedures.

View Article and Find Full Text PDF

Purpose: According to the revised Task Group number 43 recommendations, a brachytherapy source must be validated against a similar or identical source before its clinical application. The purpose of this investigation is to verify the dosimetric data of the high dose rate (HDR) BEBIG Ir source (Ir2.A85-2).

View Article and Find Full Text PDF

Background: The paradigm shifts in target theory could be defined as the radiation-triggered bystander response in which the radiation deleterious effects occurred in the adjacent cells.

Objective: This study aims to assess bystander response in terms of DNA damage and their possible cell death consequences following high-dose radiotherapy. Temporal characteristics of gH2AX foci as a manifestation of DNA damage were also evaluated.

View Article and Find Full Text PDF

This study aimed to evaluate the dose modulation potential of static and dynamic steel-shielded applicators using the Geant4 Application for Emission Tomography (GATE) Monte Carlo code for the treatment of vaginal cancer. The GATE TOOLKIT (version 9.0) was used to simulate vaginal cancer intensity-modulated brachytherapy (IMBT) in a pelvic water-equivalent phantom.

View Article and Find Full Text PDF

Background: Establishing a predictive assay of radiosensitivity (as an appropriate, practical and cost-effective method) has been challenging.

Objective: The purpose of this study is to evaluate the capability and relationship of various endpoints, including GammaH2AX, micronuclei; and apoptosis in determining the human tumor cell lines radiosensitivities compared with clonogenic survival.

Material And Methods: In an experimental in-vitro study, the response of carcinoma cell lines of HN5 and HeLa to 2 Gy of 6 MV photon beam was investigated via various assays.

View Article and Find Full Text PDF

Purpose: This study aims to validate the dosimetric characteristics of High Dose Rate (HDR) Co source (Co0.A86 model) using GATE Geant4-based Monte Carlo code. According to the recommendation of the American Association of Physicists in Medicine (AAPM) task group report number 43, the dosimetric parameters of a new brachytherapy source should be verified either experimentally or by Monte Carlo calculation before clinical applications.

View Article and Find Full Text PDF

Using high-energy photon beams is one of the most practical methods in radiotherapy treatment of cases in deep site located tumors. In such treatments, neutron contamination induced through photoneutron interaction of high energy photons (>8 MeV) with high Z materials of LINAC structures is the most crucial issue which should be considered. Generated neutrons will affect shielding calculations and cause extra doses to the patient and the probability of increase induced secondary cancer risks.

View Article and Find Full Text PDF

High-energy photons are being used to treat different kinds of cancer, but it may increase the rate of secondary cancers due to the neutron contamination as well as over exposing of patients and medical staffs in radiation therapy Takam, Bezak, Marcu, and Yeoh, 2011, Radiation Research, 176, 508-520. Due to some difficulties in experimental measurements of neutron contamination, Monte Carlo method is an efficient tool to investigate dose parameters and characteristics in new techniques. The 18-MV photon beam of linac and circular cones have been simulated by MCNP5 code.

View Article and Find Full Text PDF

Purpose: Different dose calculation algorithms (DCAs) predict different dose distributions for the same treatment. Awareness of optimal model parameters is vital for estimating normal tissue complication probability (NTCP) for different algorithms. The aim is to determine the NTCP parameter values for different DCAs in left-sided breast radiotherapy, using the Lyman-Kutcher-Burman (LKB) model.

View Article and Find Full Text PDF

: MR-linac machines are being developed for image-guided radiation therapy but the magnetic field of such machines could affect dose distributions. The purpose of this work was to evaluate the effect of a magnetic field on linac beam dosimetric parameters including penumbra for circular cones used in radiosurgery.: Monte Carlo simulation was conducted for a linac machine with circular cones at 6 MV beam.

View Article and Find Full Text PDF

Purpose: To study normal lung tissue (NLT) complications in magnetic resonance (MR) image based linac and conventional radiotherapy (RT) techniques.

Materials And Methods: The Geant4 toolkit was used to simulate a 6 MV photon beam. A homogenous magnetic field of 1.

View Article and Find Full Text PDF

Purpose: The classical dogma that restricted the radiation effect to the directly irradiated cells has been challenged by the bystander effect. This off-target phenomenon which was manifested in adjacent cells via signaling of fully exposed cells might be involved in high-dose Grid therapy as well. Here, an in-vitro study was performed to examine the possible extent of carcinoma cells response to the inhomogeneous dose distribution of Grid irradiation in the context of the bystander effect.

View Article and Find Full Text PDF

Aim Of Study: The aim of this study is to evaluate some dosimetry parameters such as uniformity, surface dose, and max depth dose with thermoluminescent dosimetry (TLD) and EBT3 film in total skin electron beam therapy (TSEBT).

Methods: Stationary and rotary methods were set on Varian linear accelerator, Clinac 2100C. To create a radiation field large enough (168 cm × 60 cm) and uniform, the source skin distance was set 400 cm.

View Article and Find Full Text PDF

Purpose: The purpose of this study is to investigate the differences between obtained percentage dose enhancements in areas around nanoparticles in GNPs (gold nanoparticles) enriched medium and percentage dose enhancements in the entire GNPs enriched medium including nanoparticles region.

Methods And Materials: To verify the accuracy of Ir-192 source simulation, the obtained values of air kerma strength, dose rate constants, and radial dose functions were compared against previously published results. Then a 1 cm × 1 cm× 1 cm tumor volume loaded with different diameters of GNPs were considered at a source to the tumor center of 1 cm.

View Article and Find Full Text PDF

The purpose of this study is to determine and verify the exact location of radiation therapy fields by using port-film and digital reconstruction radiograph (DRR) as a low-cost tool. Initially, an appropriate algorithm was written for the application of port film in the megavoltage beam irradiation. Detectable contrast was created for the image and then by using appropriate markers and developed written program by MATLAB as DRrPortRegistartion.

View Article and Find Full Text PDF

The accuracy of penumbral measurements in radiotherapy is pivotal because dose planning computers require accurate data to adequately modeling the beams, which in turn are used to calculate patient dose distributions. Gamma knife is a non-invasive intracranial technique based on principles of the Leksell stereotactic system for open deep brain surgeries, invented and developed by Professor Lars Leksell. The aim of this study is to compare the penumbra widths of Leksell Gamma Knife model C and Gamma ART 6000.

View Article and Find Full Text PDF

Aim: Tin-base catalyst is one of the widely used organometallic catalysts in polyurethane technology. The purpose of this study was to evaluate the effect of tin organometallic catalyst in the radiation response and radiological properties of a new formula of PRESAGE.

Materials And Methods: In the study, two types of PRESAGE were fabricated.

View Article and Find Full Text PDF

Aim: Low signal-to-noise ratio (SNR) images of lung-like (low-density [LD]) gel dosimeters, compared to unit-density (UD) gels, necessitate the use of different quantification methods.

Setting And Design: In this study, a new method is introduced based on noise correction and exponential (NCEXP) fitting. The feasibility of NCEXP method for quantifying dose absorption in LD gels is evaluated.

View Article and Find Full Text PDF

As a radiosurgical tool, Gamma Knife has the best and widespread name recognition. Gamma Knife is a noninvasive intracranial technique invented and developed by Swedish neurosurgeon Lars Leksell. The first commercial Leksell Gamma Knife entered the therapeutic armamentarium at the University of Pittsburgh in the United States on August 1987.

View Article and Find Full Text PDF

Aim: The aim of this study is to calculate neutron contamination at the presence of circular cones irradiating by 18 MV photons using Monte Carlo code.

Background: Small photon fields are one of the most useful methods in radiotherapy. One of the techniques for shaping small photon beams is applying circular cones made of lead.

View Article and Find Full Text PDF

Purpose: The clinical efficacy of Grid therapy has been examined by several investigators. In this project, the hole diameter and hole spacing in Grid blocks were examined to determine the optimum parameters that give a therapeutic advantage.

Methods: The evaluations were performed using Monte Carlo (MC) simulation and commonly used radiobiological models.

View Article and Find Full Text PDF

The aim of this study is to evaluate the application and accuracy of polymer gels for determining electron dose distributions in the presence of small heterogeneities made of bone and air. Different cylindrical phantoms containing MAGIC (Methacrylic and Ascorbic acid in Gelatin Initiated by Copper) normoxic polymer gel were used under the slab phantoms during irradiation. MR images of the irradiated gel phantoms were obtained to determine their R2 (spin-spin) relaxation maps for conversion to absorbed dose.

View Article and Find Full Text PDF

The Geant4 toolkit was used to develop a Monte Carlo (MC)-based engine for accurate dose calculations in small radiation field sizes. The Geant4 toolkit (version 10.1.

View Article and Find Full Text PDF

With the advent of new complex but precise radiotherapy techniques, the demands for an accurate, feasible three-dimensional (3D) dosimetry system have been increased. A 3D dosimeter system generally should not only have accurate and precise results but should also feasible, inexpensive, and time consuming. Recently, one of the new candidates for 3D dosimetry is optical computed tomography (CT) with a radiochromic dosimeter such as PRESAGE®.

View Article and Find Full Text PDF

A radiation treatment delivery technique, intensity modulated radiation therapy (IMRT), has found widespread use in the treatment of cancers. One of IMRT implementing methods is IMRT compensator based, which the modulation are done by high Z materials. When photons with energies higher than 8MV interact with high Z material in path, Photoneutrons are produced.

View Article and Find Full Text PDF