This international scale study measured the prevalence of indoor microplastics (MPs) in deposited dust in 108 homes from 29 countries over a 1-month period. Dust borne MPs shape, colour, and length were determined using microscopy and the composition measured using μFTIR. Human health exposure and risk was assessed along with residential factors associated with MPs via a participant questionnaire.
View Article and Find Full Text PDFPeople spend increasing amounts of time at home, yet the indoor home environment remains understudied in terms of potential exposure to toxic trace metals. We evaluated trace metal (and metalloid) concentrations (As, Cu, Cr, Mn, Ni, Pb, and Zn) and health risks in indoor dust from homes from 35 countries, along with a suite of potentially contributory residential characteristics. The objective was to determine trace metal source inputs and home environment conditions associated with increasing exposure risk across a range of international communities.
View Article and Find Full Text PDFLimited attention has been given to the presence of MPs in the atmospheric environment, particularly in indoor environments where people spend about 90% of their time. This study quantitatively assesses the prevalence, source and type of MPs in Australian homes with the goal of evaluating human health exposure potential. Thirty-two airborne indoor deposited dust samples were collected in glass Petri dishes from Sydney (Australia) homes, over a one-month period in 2019.
View Article and Find Full Text PDFThis study examines residential indoor dust from 224 homes in Sydney, Australia for trace element concentrations measured using portable X-ray Fluorescence (pXRF) and their potential risk of harm. Samples were collected as part of a citizen science program involving public participation via collection and submission of vacuum dust samples for analysis of their As, Cr, Cu, Mn, Ni, Pb and Zn concentrations. The upper 95% confidence level of the mean values for 224 samples (sieved to <250 μm) were 20.
View Article and Find Full Text PDFSoils play a vital role in the quality of the urban environment and the health of its residents. City soils and street dusts accumulate various contaminants and particularly potentially toxic elements (PTEs) from a variety of human activities. This study investigates the current condition of elemental concentration in the urban soils of Hamedan, the largest and the fastest-growing city in western Iran.
View Article and Find Full Text PDF