Biomaterials capable of delivering therapeutic proteins are relevant in biomedicine, yet their manufacturing relies on centralized manufacturing chains that pose challenges to their remote implementation at the point of care. This study explores the viability of confined cell-free protein synthesis within porous hydrogels as biomaterials that dynamically produce and deliver proteins to in vitro and in vivo biological microenvironments. These functional biomaterials have the potential to be assembled as implants at the point of care.
View Article and Find Full Text PDFEdible mealworms can be farmed to produce high-quality nutrients and proteins, useful as ingredients in human and animal foods. During this process biological waste is produced. This work explores the usage of the biological waste as source to produce chitin and chitosan with different potential applications.
View Article and Find Full Text PDFBiocompatible three-dimensional porous scaffolds are widely used in multiple biomedical applications. However, the fabrication of tailor-made 3D structures with controlled and combined multiscale macroscopic-microscopic, surface and inner porosities in a straightforward manner is still a current challenge. Herein, we use multimaterial fused deposition modeling (FDM) to generate poly (vinyl alcohol) (PVA) sacrificial moulds filled with poly (Ɛ-caprolactone) (PCL) to generate well defined PCL 3D objects.
View Article and Find Full Text PDFcell culture studies are common in the cancer research field, and reliable biomimetic 3D models are needed to ensure physiological relevance. In this manuscript, we hypothesized that decellularized xenograft tumors can serve as an optimal 3D substrate to generate a top-down approach for tumor modeling. Multiple tumor cell lines were xenografted and the formed solid tumors were recovered for their decellularization by several techniques and further characterization by histology and proteomics techniques.
View Article and Find Full Text PDFPectin has recently attracted increasing attention for biomedical and pharmaceutical applications. Due to the lack of adhesion molecules in polysaccharides, phenolic hydroxyl conjugated gelatin was added to enzymatically-gellable peroxidase-modified pectin derivative and compared with phenolic hydroxyl -pectin/collagen. Both pectin and gelatin were modified by tyramine hydrochloride in the presence of EDC/NHS.
View Article and Find Full Text PDFToday, there is an urgent need to develop a three-dimentional culture systems mimicking native condition in order to screen potency of drugs and possibly any genetic alterations in tumor cells. Due to the existence of limitations in animal models, the development of three dimensional systems is highly recommended. To this end, we encapsulated human colon adenocarcinoma cell line HT29 with alginate-poly-L-lysine (Alg-PLL) microspheres and the rate of epithelial-mesenchymal transition was monitored.
View Article and Find Full Text PDFThe influence of collagen as an effective substitute for gelatin was investigated on properties of chitosan/gelatin hydrogels for fibroblasts growth and attachment for wound dressing applications. We synthesized hydrogels based on chitosan associated with collagen and gelatin biopolymers (in the ratio of 1:5 and 1:1, respectively). The hydrogels properties such as morphology, swelling ratio, mechanical characteristics, water vapor loss, water vapor transmission rate (WVTR), and biodegradation were analyzed.
View Article and Find Full Text PDFModular bone tissue engineering is touted as an alternative approach to replace the damaged bone tissue. Hydrogel microcapsules could promote therapeutic properties by providing 3D condition and an increased cell-to-cell interaction. We investigated the osteogenic properties of alginate-nano-silica hydrogels enriched with collagen and gelatin on human osteoblast-like MG-63 cells.
View Article and Find Full Text PDF