Gram-positive Bacillus subtilis is a model organism for the biotechnology industry and has recently been characterized as weakly electroactive in both planktonic cultures and biofilms. Increasing the extracellular electron transfer (EET) rate in B. subtilis biofilms will help to develop an efficient microbial electrochemical technology (MET) and improve the bioproduction of high-value metabolites under electrofermentative conditions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2024
Antibacterial formulations based on zinc oxide nanoparticles (ZnO NPs) are widely used for antibiotic replacement in veterinary medicine and animal nutrition. However, the undesired environmental impact of ZnO NPs triggers a search for alternative, environmentally safer solutions. Here, we show that Zn in its ionic form is a more eco-friendly antibacterial, and its biocidal action rivals that of ZnO NPs (<100 nm size), with a minimal biocidal concentration being 41(82) μg mL vs 5 μg mL of ZnO NPs, as determined for 10(10) CFU mL .
View Article and Find Full Text PDFFluctuations in redox conditions in bioprocesses can alter the end-products, reduce their concentration, and lengthen the process time. Electrofermentation enables rapid metabolic modulation of biosynthesis and allows control of redox imbalances in biofilm-based fermentation processes. In this study, electrofermentation is used to boost the production of the bacterial biopolymer poly-γ-glutamic acid (γ-PGA) from Bacillus subtilis ATCC 6051.
View Article and Find Full Text PDFBacillus subtilis is a Gram-positive, spore-forming bacterium with a versatile and adaptable metabolism, which makes it a viable cell factory for microbial production. Electroactivity has recently been identified as a cellular characteristic linked with the metabolic activity of B. subtilis.
View Article and Find Full Text PDFThis century is blessed with enhanced medical facilities on the grounds of the development of smart biomaterials. The rise of the four-dimensional (4D) bioprinting technology is a shining example. Using inert biomaterials as the bioinks for the three-dimensional (3D) printing process, static objects that might not be able to mimic the dynamic nature of tissues would be fabricated; by contrast, 4D bioprinting can be used for the fabrication of stimuli-responsive cell-laden structures that can evolve with time and enable engineered tissues to undergo morphological changes in a pre-planned way.
View Article and Find Full Text PDF