Publications by authors named "Neda Arabzadeh Nosratabad"

Environmental pollution, particularly from heavy metals and toxic elements, poses a significant threat to both human health and ecological systems. While various remediation technologies exist, there is an urgent need for cost-effective and sustainable solutions. Biochar, a carbon-rich product derived from the pyrolysis of organic matter, has emerged as a promising material for environmental remediation.

View Article and Find Full Text PDF

There has been much interest in evaluating the strength of the coordination interactions between N-heterocyclic carbene (NHC) molecules and transition metal ions, nanocolloids and surfaces. We implement a top-down core digestion test of Au nanoparticles (AuNPs) triggered by incubation with a large molar excess of poly(ethylene glycol)-appended NHC molecules, where kinetic dislodging of surface atoms and formation of NHC-Au complexes progressively take place. We characterize the structure and chemical nature of the generated PEG-NHC-Au complexes using 1D and 2D H-C NMR spectroscopy, supplemented with matrix assisted laser desorption/ionization mass spectrometry, and transmission electron microscopy.

View Article and Find Full Text PDF

Magnetic resonance imaging, MRI, relying on F nuclei has attracted much attention, because the isotopes exhibit a high gyromagnetic ratio (comparable to that of protons) and have 100% natural abundance. Furthermore, due to the very low traces of intrinsic fluorine in biological tissues, fluorine labeling allows easy visualization using F-based MRI. However, one of the drawbacks of the available fluorine tracers is their very limited solubility in water.

View Article and Find Full Text PDF

We have tested the ability of N-heterocyclic carbene (NHC)-modified ligands to coordinate and stabilize luminescent CdSe-ZnS core-shell quantum dot (QD) dispersions in hydrophilic media. In particular, we probed the effects of ligand structure and coordination number on the coating affinity to the nanocrystals. We find that such NHC-based ligands rapidly coordinate onto the QDs (requiring ∼5-10 min of reaction time), which reflects the soft Lewis base nature of the NHC groups, with its two electrons sharing capacity.

View Article and Find Full Text PDF