Background: Glioblastoma multiforme (GBM) is the most common and aggressive brain tumor. Metformin, an anti-diabetic drug, can suppress tumor cells. Exosomes from GBM cells contribute to intercellular communication, tumor aggressiveness, and therapeutic resistance.
View Article and Find Full Text PDFBackground: Leflunomide (LFD) is an Aryl hydrocarbon receptor (AhR) agonist and immunomodulatory drug with several side effects. Niosomes are novel drug delivery systems used to reduce the unfavorable effects of drugs by enhancing their bioavailability, controlling their release and targeting specific sites.
Objectives: Here, we prepared niosomal formulations of LFD, evaluated their properties and delivered to THP-1 monocytic cells to study the activation and nuclear translocation of AhR.
Background: Studies have recently revealed that almost every type of cells including tumor cells abundantly release small vesicles known as extracellular vesicles (EVs) into the extracellular milieu. EVs carry a repertoire of biological molecules including nucleic acids, proteins, lipids, and carbohydrates and transport their cargo between cells in the vicinity as well as distantly located cells and hence act as messengers of intercellular communication. In this review, we aimed to discuss the tumor-derived exosome biology and the pivotal roles of exosomes in cancer diagnosis and treatment.
View Article and Find Full Text PDFAlthough niosomes structurally resemble liposomes, they are composed of nonionic surfactants which result in less toxicity and more stability. Here, we developed a novel niosomal formulation of I3C and investigated the nuclear translocation and activation of AhR among human acute myeloid leukaemia (AML) monocytic THP-1 cell line. Niosomal vesicles comprised of nonionic surfactants, cholesterol and I3C were prepared using thin film hydration (TFH) method and characterized according to the entrapment efficiency (EE %), size and zeta potential, by Dynamic light scattering method (DLS), and the surface morphology visualized by Transmission electron microscopy (TEM).
View Article and Find Full Text PDF