The use of deep generative models (DGMs) such as variational autoencoders, autoregressive models, flow-based models, energy-based models, generative adversarial networks, and diffusion models has been advantageous in various disciplines due to their high data generative skills. Using DGMs has become one of the most trending research topics in Artificial Intelligence in recent years. On the other hand, the research and development endeavors in the civil structural health monitoring (SHM) area have also been very progressive owing to the increasing use of Machine Learning techniques.
View Article and Find Full Text PDFImplementing Structural Health Monitoring (SHM) systems with extensive sensing layouts on all civil structures is obviously expensive and unfeasible. Thus, estimating the state (condition) of dissimilar civil structures based on the information collected from other structures is regarded as a useful and essential way. For this purpose, Structural State Translation (SST) has been recently proposed to predict the response data of civil structures based on the information acquired from a dissimilar structure.
View Article and Find Full Text PDFPrestressed girders often deteriorate over time due to environmental and man-made stressors, lowering the strength and serviceability of bridge structures. Although structural repairs are implemented to improve the load carrying capacity of the structure, the presence of numerous unknowns leads to high uncertainty in estimating the adequacy of repairs. For instance, the cross-section of the remaining strands, material properties, applied external loads, and workmanship assumptions made throughout the repair process introduce ambiguities when estimating the adequacy of the repairs.
View Article and Find Full Text PDFIncreasing extreme climate events, intensifying traffic patterns and long-term underinvestment have led to the escalated deterioration of bridges within our road and rail transport networks. Structural Health Monitoring (SHM) systems provide a means of objectively capturing and quantifying deterioration under operational conditions. Computer vision technology has gained considerable attention in the field of SHM due to its ability to obtain displacement data using non-contact methods at long distances.
View Article and Find Full Text PDFCurrently, the majority of studies on vision-based measurement have been conducted under ideal environments so that an adequate measurement performance and accuracy is ensured. However, vision-based systems may face some adverse influencing factors such as illumination change and fog interference, which can affect measurement accuracy. This paper developed a robust vision-based displacement measurement method which can handle the two common and important adverse factors given above and achieve sensitivity at the subpixel level.
View Article and Find Full Text PDF