Publications by authors named "Nebout M"

Unlabelled: Dependency on mitochondrial oxidative phosphorylation (OxPhos) is a potential weakness for leukemic stem cells (LSC) that can be exploited for therapeutic purposes. Fatty acid oxidation (FAO) is a crucial OxPhos-fueling catabolic pathway for some acute myeloid leukemia (AML) cells, particularly chemotherapy-resistant AML cells. Here, we identified cold sensitivity at 4°C (cold killing challenge; CKC4), commonly used for sample storage, as a novel vulnerability that selectively kills AML LSCs with active FAO-supported OxPhos while sparing normal hematopoietic stem cells.

View Article and Find Full Text PDF

Background & Aims: In CML, Leukemic Stem Cells (LSCs) that are insensitive to Tyrosine Kinase Inhibitors are responsible for leukemia maintenance and relapses upon TKI treatment arrest. We previously showed that downregulation of the BMI1 polycomb protein that is crucial for stem/progenitor cells self-renewal induced a CCNG2/dependent proliferation arrest leading to elimination of Chronic Myeloid Leukemia (CML) cells. Unfortunately, as of today, pharmacological inhibition of BMI1 has not made its way to the clinic.

View Article and Find Full Text PDF

Numerous combinations of signaling pathway blockades in association with tyrosine kinase inhibitor (TKI) treatment have been proposed for eradicating leukemic stem cells (LSCs) in chronic myeloid leukemia (CML), but none are currently clinically available. Because targeting protein kinase Cδ (PKCδ) was demonstrated to eliminate cancer stem cells (CSCs) in solid tumors, we evaluated the efficacy of PKCδ inhibition in combination with TKIs for CML cells. We observed that inhibition of PKCδ by a pharmacological inhibitor, by gene silencing, or by using K562 CML cells expressing dominant-negative (DN) or constitutively active (CA) PKCδ isoforms clearly points to PKCδ as a regulator of the expression of the stemness regulator BMI1.

View Article and Find Full Text PDF

T-cell Acute Lymphoblastic Leukemia (T-ALL) is an aggressive subtype of leukemia for which important progress in treatment efficiency have been made in the past decades to reach a cure rate of 75%-80% nowadays. It is nevertheless mandatory to find new targets and active molecules for innovative therapeutic strategies as relapse is associated with a very dismal outcome. We designed an experimental workflow to highlight the conserved core pathways associated with leukemogenesis by confronting the gene expression profiles (GEPs) of human T-ALL cases to the GEP of a murine T-ALL representative model, generated by the conditional deletion of the tumor suppressor gene in T cell precursors (tPTEN-/-).

View Article and Find Full Text PDF

Cancer cells reprogram their metabolism to optimize their growth and proliferation in the host microenvironment. For this purpose, they enhance the uptake of extracellular nutrients and deal with the metabolic waste products through the overexpression of numerous membrane proteins including amino-acid transporters (LAT1) and acid-base regulating enzymes, such as carbonic anhydrases (CAs). Here we describe the anti-tumoral effects of a new class of CAXII inhibitors, the glycosyl coumarins on T-ALL/LL cells.

View Article and Find Full Text PDF

Iron is an essential nutrient, acting as a catalyst for metabolic reactions that are fundamental to cell survival and proliferation. Iron complexed to transferrin is delivered to the metabolism after endocytosis via the CD71 surface receptor. We found that transformed cells from a murine PTEN-deficient T-cell lymphoma model and from T-cell acute lymphoblastic leukemia/lymphoma (T-ALL/T-LL) cell lines overexpress CD71.

View Article and Find Full Text PDF

Many antibiotics in clinical use target the bacterial ribosome by interfering with the protein synthesis machinery. However, targeting the human ribosome in the case of protein synthesis deregulations such as in highly proliferating cancer cells has not been investigated at the molecular level up to now. Here we report the structure of the human 80S ribosome with a eukaryote-specific antibiotic and show its anti-proliferative effect on several cancer cell lines.

View Article and Find Full Text PDF

Here we demonstrate that in a niche-like coculture system, cells from both primary and cultured acute myeloid leukemia (AML) sources take up functional mitochondria from murine or human bone marrow stromal cells. Using different molecular and imaging approaches, we show that AML cells can increase their mitochondrial mass up to 14%. After coculture, recipient AML cells showed a 1.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is sustained by a subpopulation of rare leukemia-initiating cells (LIC) detected in the xenograft assay by their capacity to self-renew and to generate non-LICs in vivo The xenotransplantation model captures functional properties of LICs that have clinical prognostic value. However, the long duration of this in vivo assay has hampered its use as a prognostic tool. Here, we show, using an ex vivo coculture system, that intermediate and poor risk AML patient samples at diagnosis have a 5 to 7 times higher frequency of leukemic long-term culture-initiating cells (L-LTC-IC) compared with the good risk group.

View Article and Find Full Text PDF

The BMI1 polycomb protein regulates self-renewal, proliferation and survival of cancer-initiating cells essentially through epigenetic repression of the CDKN2A tumor suppressor locus. We demonstrate here for the first time that BMI1 also prevents autophagy in chronic myeloid leukemia (CML) cell lines, to support their proliferation and clonogenic activity. Using chromatin immunoprecipitation, we identified CCNG2/cyclin G2 (CCNG2) as a direct BMI1 target.

View Article and Find Full Text PDF

The altered metabolism of cancer cells is a treasure trove to discover new antitumoral strategies. The gene (SLC7A5) encoding system L amino-acid transporter 1 (LAT1) is overexpressed in murine lymphoma cells generated via T-cell deletion of the pten tumor suppressor, and also in human T-cell acute lymphoblastic leukemia (T-ALL)/lymphoma (T-LL) cells. We show here that a potent and LAT1 selective inhibitor (JPH203) decreased leukemic cell viability and proliferation, and induced transient autophagy followed by apoptosis.

View Article and Find Full Text PDF

We show here that the antidiabetic agents metformin and phenformin and the AMPK activator AICAR exert strong anti-tumoural effects on tPTEN-/- lymphoma cells and on human T-ALL cell lines and primary samples. The compounds act by inhibiting tumour metabolism and proliferation and by inducing apoptosis in parallel with an activation of AMPK and an inhibition of constitutive mTOR. In tPTEN-/- cells, the drugs potentiated the anti-leukaemic effects of dexamethasone, and metformin and phenformin synergised with 2-deoxyglucose (2DG) to impair tumour cell survival.

View Article and Find Full Text PDF

The membrane-bound carbonic anhydrase isoforms CAIX and CAXII, underpin a pH-regulating system that enables hypoxic tumor cell survival. Here, we observed for the first time an upregulation of CAXII in T-cell acute lymphoblastic leukemia/lymphoma (T-ALL/LL) cells. First we showed that CAXII is overexpressed in thymocytes from tPTEN-/- mice suffering of T lymphoma and that its pharmacological inhibition decreased cell proliferation and induced apoptosis.

View Article and Find Full Text PDF

Testicular germ cell cancers are the most common solid malignancies in young men, but their pathogenesis remains undetermined although some epidemiological data have implicated both environmental and genetic factors. Glial cell-derived neurotrophic factor (GDNF) is secreted by Sertoli cells, and promotes germ stem cell proliferation by activating RET, a tyrosine kinase receptor. Over-expression of GDNF in adult transgenic mice induces the development of testicular tumours that mimic human seminoma, the most frequent testicular germ cell tumour.

View Article and Find Full Text PDF

Background: Fetal exposure to environmental estrogens may contribute to hypofertility and/or to testicular germ cell cancer. However, many of these xenoestrogens have only a weak affinity for the classical estrogen receptors (ERs,) which is 1,000-fold less potent than the affinity of 17beta-estradiol (E(2)). Thus, several mechanisms have been suggested to explain how they could affect male germ cell proliferation at low environmental relevant concentrations.

View Article and Find Full Text PDF

Testicular germ cell tumours (TGCTs), the most frequent solid tumour of the young men, originate from the primitive germ cells. They share some pluripotency stem-cell markers which may help to distinguish between seminoma, the most frequent TGCTs and non-seminoma tumours, such as embryonal carcinoma, teratocarcinoma or choriocarcinoma. Due probably to the propensity of seminoma to apoptosis, only two cell lines originated from pure testicular seminoma, TCam-2 and JKT-1 have been up to now, established, maintained and proposed as representative models of human testicular seminoma.

View Article and Find Full Text PDF

Clinical and experimental studies have suggested that estrogens, the archetype of female hormones, participate in the control of male germ cell proliferation and that fetal exposure to environmental estrogens may contribute to hypofertility and/or to testicular germ cell cancer. However, the underlying mechanisms remain to be elucidated. 17beta-Estradiol (E2) conjugated to BSA was able to stimulate human testicular seminoma cell proliferation by triggering a rapid, nongenomic, membrane-mediated activation of ERK1/2 and cAMP-dependent protein kinase A (PKA).

View Article and Find Full Text PDF

Macroautophagy (hereafter referred to as autophagy) is the major degradative pathway of long-lived proteins and organelles that fulfils key functions in cell survival, tissue remodeling and tumor suppression. Consistently, alterations in autophagy have been involved in a growing list of pathologies including toxic injury, infections, neurodegeneration, myopathies and cancers. Although critical, the molecular mechanisms that control autophagy remain largely unknown.

View Article and Find Full Text PDF

There is strong evidence that thyroid hormones through triiodothyronine (T3) regulate Sertoli cell proliferation and differentiation in the neonatal testis. However, the mechanism(s) by which they are able to control Sertoli cell proliferation is unclear. In the present study in vivo approaches (PTU-induced neonatal hypothyroidism known to affect Sertoli cell proliferation) associated with in vitro experiments on a Sertoli cell line were developed to investigate this question.

View Article and Find Full Text PDF

Macroautophagy (hereafter referred to as autophagy) has emerged as a key tumor suppressor pathway. During this process, the cytosolic constituents are sequestered into autophagosomes, which subsequently fuse with lysosomes to become autolysosomes where their contents are finally degraded. Although a reduced autophagy has been shown in human tumors or in response to oncogenes and carcinogens, the underlying mechanism(s) remain(s) unknown.

View Article and Find Full Text PDF

It is now well established that estrogens participate in the control of normal spermatogenesis and endogenous or environmental estrogens are involved in pathological germ cell proliferation including testicular germ cell tumors. Studying a human testicular seminoma cell line, JKT-1, we show here that 17beta-estradiol (10(-12) to 10(-6) M) induced in vitro a significant dose-dependent decrease of cell growth. This antiproliferative effect was maximum after 4 days of exposure at a physiologically intratesticular concentration of 10(-9) M, close to the K(d) of ER, and reversed by ICI 182780, an ER antagonist, suggesting an ER-mediated pathway.

View Article and Find Full Text PDF
Article Synopsis
  • Gap junctional intercellular communication regulates cell growth and differentiation, with connexin33 inhibiting this communication when injected into Xenopus oocytes.
  • Connexin33 is exclusively expressed in the seminiferous tubules of the testis and is unphosphorylated, unlike other connexins.
  • It physically interacts with connexin43, sequestering the complex in early endosomes, leading to impaired communication between cells and suggesting connexin33 may play a role in regulating germ cell proliferation.
View Article and Find Full Text PDF

Although worldwide concerns have emerged about environmental factors that display carcinogenic and reprotoxic effects, little is known about the mechanism(s) by which these chemicals alter testicular function. Using the 42GPA9 Sertoli cell line, we recently reported that one widely used lipid-soluble pesticide, Lindane impairs gap junctional intercellular communication by promoting the intracellular localization of Connexin 43 (Cx43), a tumor suppressor. We showed here that this chemical triggered the accumulation of Cx43 within Rab5 positive endosomes.

View Article and Find Full Text PDF