Publications by authors named "Nebe B"

Besides the need for biomaterial surface modification to improve cellular attachment, laser-structuring is favorable for designing a new surface topography for external bone fixator pins or implants. The principle of this study was to observe how bioinspired (deer antler) laser-induced nano-microstructures influenced the adhesion and growth of skin cells. The goal was to create pins that allow the skin to attach to the biomaterial surface in a bacteria-proof manner.

View Article and Find Full Text PDF

Background: Electrical stimulation is used for enhanced bone fracture healing. Electrochemical processes occur during the electrical stimulation at the electrodes and influence cellular reactions. Our approach aimed to distinguish between electrochemical and electric field effects on osteoblast-like MG-63 cells.

View Article and Find Full Text PDF

The sensitivity to cold plasma is specific to tumor cells while leaving normal tissue cells unaffected. This is the desired challenge in cancer therapy. Therefore, the focus of this work was a comparative study concerning the plasma sensitivity of dermal tumor cells (A-431) versus non-tumorigenic dermal cells (HaCaT) regarding their adhesion capacity.

View Article and Find Full Text PDF

Introduction: Skin cancer is often fatal, which motivates new therapy avenues. Recent advances in cancer treatment are indicative of the importance of combination treatments in oncology. Previous studies have identified small molecule-based therapies and redox-based technologies, including photodynamic therapy or medical gas plasma, as promising candidates to target skin cancer.

View Article and Find Full Text PDF

An extensive research field in regenerative medicine is electrical stimulation (ES) and its impact on tissue and cells. The mechanism of action of ES, particularly the role of electrical parameters like intensity, frequency, and duration of the electric field, is not yet fully understood. Human MG-63 osteoblasts were electrically stimulated for 10 min with a commercially available multi-channel system (IonOptix).

View Article and Find Full Text PDF

Due to the increasing number of human skin cancers and the limited effectiveness of therapies, research into innovative therapeutic approaches is of enormous clinical interest. In recent years, the use of cold atmospheric pressure plasma has become increasingly important as anti-cancer therapy. The combination of plasma with small molecules offers the potential of an effective, tumour-specific, targeted therapy.

View Article and Find Full Text PDF

Various approaches are being pursued to physico-chemically modify the zirconia neck region of dental implants to improve the integration into the surrounding soft tissue. In this study, polished zirconia discs were laser microstructured with periodic cavities and convex waves. These zirconia samples were additionally activated by argon plasma using the kINPen09.

View Article and Find Full Text PDF

Orthopaedic implants and temporary osteosynthesis devices are commonly based on Titanium (Ti). For short-term devices, cell-material contact should be restricted for easy removal after bone healing. This could be achieved with anti-adhesive plasma-fluorocarbon-polymer (PFP) films created by low-temperature plasma processes.

View Article and Find Full Text PDF

The functionality of living cells is inherently linked to subunits with dimensions ranging from several micrometers down to the nanometer scale. The cell surface plays a particularly important role. Electric signaling, including information processing, takes place at the membrane, as well as adhesion and contact.

View Article and Find Full Text PDF

One of the most popular cell lines in osteogenesis studies is the human osteoblastic line MG-63. For cell biological investigation, it is important that the cells remain stable in their phenotype over several passages in cell culture. MG-63 cells can be used to provide fundamental insights into cell--material interaction.

View Article and Find Full Text PDF

Ureteric stents have become an indispensable tool in the armamentarium of every urologist. However, they carry their own morbidity resulting mostly from infectious or abacterial fouling and biofilm formation, and/or urothelial hyperplastic reaction. All of these may interact and lead to clinical complications.

View Article and Find Full Text PDF

A numerical model for the adhesion of osteoblasts on titanium micropillar structures is suggested, and a function representing the concentration level of the adhesion on the pillars is constructed based on experimental observation. The introduction of this function helps a well-known bio-chemo-mechanical model to better predict the formation of actin in osteoblasts when they are laid on arrays of titanium micro-pillars of various size attached to silicon substrate. A parameter study suggests that each pillar is associated with a different pattern of adhesion.

View Article and Find Full Text PDF

The bioactive lipid sphingosine-1-phosphate (S1P) is a main regulator of cell survival, proliferation, motility, and platelet aggregation, and it is essential for angiogenesis and lymphocyte trafficking. In that S1P acts as a second messenger intra- and extracellularly, it might promote cancer progression. The main cause is found in the high S1P concentration in the blood, which encourage cancer cells to migrate through the endothelial barrier into the blood vessels.

View Article and Find Full Text PDF

The mechanical interaction between cells and their underlying substrates is important in understanding the processes that take place at an interface between biological tissue and the surface of implants. There have been numerous studies that examine these interactions both by experimental and numerical modeling. The bio-chemo-mechanical model for cell contractility by Deshpande et al.

View Article and Find Full Text PDF

Background: Phytoestrogens such as genistein, the most prominent isoflavone from soy, show concentration-dependent anti-estrogenic or estrogenic effects. High genistein concentrations (>10 μM) also promote proliferation of bone cancer cells in vitro. On the other hand, the most active component of the vitamin D family, calcitriol, has been shown to be tumor protective in vitro and in vivo.

View Article and Find Full Text PDF

The provided data contains the phagocytic interaction of human MG-63 osteoblasts with micro-particles 6 µm in size as well as geometric micro-pillared topography with micro-pillar sizes 5 µm of length, width, height and spacing respectively related to the research article entitled "Attempted caveolae-mediated phagocytosis of surface-fixed micro-pillars by human osteoblasts" in the journal. [1] Micro-particle treatment was used as positive control triggering phagocytosis by the osteoblasts. Caveolin-1 (Cav-1) as major structural component of caveolae [2] plays an important role in the phagocytic process of micro-particles and -pillars.

View Article and Find Full Text PDF

Background: The medicinal plants Vincetoxicum arnottianum (VSM), Berberis orthobotrys (BORM), Onosma hispida (OHRM and OHAM) and Caccinia macranthera (CMM) are used traditionally in Pakistan and around the world for the treatment of various diseases including cancer, dermal infections, uterine tumor, wounds etc. The present study focuses on the investigation of the selected Pakistani plants for their potential as anticancer agents on human bone and breast cancer cell lines in comparison with non-tumorigenic control cells.

Methods: The antitumor evaluation was carried out on human bone (MG-63, Saos-2) and breast cancer cell lines (MCF-7, BT-20) in contrast to non-tumorigenic control cells (POB, MCF-12A) via cell viability measurements, cell cycle analysis, Annexin V/PI staining, microscopy based methods as well as migration/invasion determination, metabolic live cell monitoring and western blotting.

View Article and Find Full Text PDF

The generation of hybrid materials based on β-tricalcium phosphate (TCP) and various biodegradable polymers like poly(l-lactide-co-d,l-lactide) (PLA) represents a common approach to overcoming the disadvantages of pure TCP devices. These disadvantages lie in TCP's mechanical properties, such as brittleness. The positive characteristic of PLA - improvement of compressive strength of calcium phosphate scaffolds - is diametrically opposed to its cell attractiveness.

View Article and Find Full Text PDF

Studies on bone cell ingrowth into synthetic, porous three-dimensional (3D) implants showed difficulties arising from impaired cellular proliferation and differentiation in the core region of these scaffolds with increasing scaffold volume in vitro. Therefore, we developed an in vitro perfusion cell culture module, which allows the analysis of cells in the interior of scaffolds under different medium flow rates. For each flow rate the cell viability was measured and compared with results from computer simulations that predict the local oxygen supply and shear stress inside the scaffold based on the finite element method.

View Article and Find Full Text PDF

Cells are sensitive to their underlying micro- and nano-topography, but the complex interplay is not completely understood especially if sharp edges and ridges of stochastically modified surfaces interfere with an attached cell body. Micro-topography offers cues that evoke a large range of cell responses e.g.

View Article and Find Full Text PDF

Implantation of biomaterials can cause complications often associated with inflammatory reactions. However, repeated evaluation of the implant site would be burdening for patients. Alternatively, blood examinations with analysis of inflammatory serum markers could potentially be useful to reflect the local cellular response for detection and/or prediction of inflammation-related complications.

View Article and Find Full Text PDF

Detailed insights into the complex cellular behavior at the biomaterial interface are crucial for the improvement of implant surfaces with respect to their acceptance and integration. The cells perceive microtopographical features and, in consequence, rearrange their adhesion structures like the actin cytoskeleton and adaptor proteins. But little is known about whether these altered cellular phenotypes have consequences for intracellular calcium signaling and its dynamics.

View Article and Find Full Text PDF

Background: Jatropha curcas (JCP1), Pyrenacantha staudtii (PS), Picralima nitida (ZI) and Jatropha gossypifolia (JCP2) are plants used in the African folklore for the treatment of various cancers.

Methods: This study investigated the in vitro anticancer effects of the ethanol extracts against human epithelial MCF-7 breast cancer cells in a dose-dependent manner (1-50 μg/ml) by using cell cycle analysis, viability assay, annexin V/PI staining, TUNEL method and expression determination of apoptotic and adhesion relevant proteins. Adhesion processes were monitored by detachment via flow cytometry, β1-integrin expression and formation of the actin cytoskeleton.

View Article and Find Full Text PDF