Publications by authors named "Neave B"

Background: The Balance Intensity Scales (BIS) have been developed to measure the intensity of balance exercise in older adults.

Objective: The objective was to determine whether the BIS for therapists (BIS-T) and for exercisers (BIS-E) are unidimensional measures of balance exercise intensity, able to be refined using the Rasch model into a hierarchical item order, and appropriately targeted for the older adult population with a variety of diagnoses in a range of exercise testing settings.

Design: This was a scale development study using a pragmatic mixed-methods approach.

View Article and Find Full Text PDF

The tumor suppressor gene patched (ptc) encodes an approximately 140 kDa polytopic transmembrane protein [1-3] [corrected] that binds members of the Hedgehog (Hh) family of signaling proteins [4-6] [corrected] and regulates the activity of Smoothened (Smo), a G protein-coupled receptor-like protein essential for Hh signal transduction [7-9] [corrected]. Ptc contains a sterol-sensing domain (SSD) [10, 11] [corrected], a motif found in proteins implicated in the intracellular trafficking of cholesterol [12] [corrected], and/or other cargoes [13-15] [corrected]. Cholesterol plays a critical role in Hedgehog (Hh) signaling by facilitating the regulated secretion and sequestration of the Hh protein [16] [corrected], to which it is covalently coupled.

View Article and Find Full Text PDF

Recent studies in early Xenopus and zebrafish embryos have demonstrated that posteriorizing, non-axial signals arising from outside the organizer (or shield) contribute to A/P patterning of the neural axis, in contradiction to the classical Spemann model in which such signals were proposed to be solely organizer derived. Our studies on the early expression of the transcription factors GATA-2 and 3 in both Xenopus and zebrafish nonneural ectoderm lend support to the existence of such non-axial signaling in the A/P axis. Thus we find that the earliest expression of GATA-2 and 3 is located in nonneural ectoderm and is strongly patterned in a graded manner along the A/P axis, being high anteriorly and absent from the most posterior regions.

View Article and Find Full Text PDF

The effects of signal perturbation on expression domains of molecular markers for the mesoderm and ectoderm have been analysed across the dorso-ventral axis in zebrafish embryos. Injection of RNA encoding bone morphogenetic protein-4 (BMP-4) ventralised the embryo, expanding the intermediate mesoderm and non-neural ectoderm at the expense of the dorso-anterior mesoderm and neural plate. A dose-dependent response was observed both morphologically and in expression of gta3, MyoD and pax2.

View Article and Find Full Text PDF

In order to understand the role of the transcription factor GATA 3 in vertebrate development, we have examined its expression and some aspects of its regulation during gastrulation and neurulation in the zebrafish. The complete coding sequence of the cDNA encoding the zebrafish GATA 3 homologue, termed gta3, is described. Analysis of expression patterns by in situ hybridisation shows the gene to be expressed during gastrulation in the ventral region of the embryo which includes tissue fated to form the non-neural ectoderm.

View Article and Find Full Text PDF