Publications by authors named "Neau S"

Glaucoma, a leading cause of blindness due to elevated intraocular pressure (IOP), is managed with medications like latanoprost (LAT), a prostaglandin analogue, to enhance aqueous outflow. Despite the challenge posed by eye anatomy and tear dynamics, effective ocular bioavailability via topical administration remains elusive. This study aims to optimize self-assembled nanomicelles incorporating LAT, an anti-glaucoma drug, belonging to BCS Class II (low solubility and high permeability) via a two-level, two-factor full factorial design, the nanomicelles were formulated via direct dissolution method and validated using design of expert.

View Article and Find Full Text PDF

Nanoparticles have numerous applications as drug carriers in drug delivery. The aim of the study was to produce tamoxifen nanoparticles with a defined size and higher encapsulation for efficient tissue uptake with controlled drug release. The quality by design approach was utilized to produce tamoxifen-loaded Eudragit nanoparticles by identifying the significant process variables using the nanoprecipitation method.

View Article and Find Full Text PDF

Improving the bioavailability of a drug at the ocular surface presents a profound challenge. Due to ocular physiological barriers, conventional eye drops exhibit poor bioavailability of drugs. Sustained-release nanoparticles may improve the residence time and hence increase absorption of the drug from the corneal surface.

View Article and Find Full Text PDF

A modified method to determine protein encapsulation efficiency in polymer matrices has been developed and applied to two proteins and two polymers to demonstrate its wide range of applicability. This study was pursued due to the wide variation in reported protein encapsulation efficiency of polymer-based microcapsules, even when the protein, the polymer, and the microcapsule manufacturing method were consistent. Hemoglobin (Hb) and bovine serum albumin (BSA) were chosen as model proteins and ethylcellulose and poly(lactic-co-glycolic acid) (PLGA) as model polymers.

View Article and Find Full Text PDF

The objective was to use caffeine and Soluplus® to improve the dissolution rate and to maintain a concentration of BCS Class II rosuvastatin calcium that exceeds its solubility. Caffeine and Soluplus® together substantially improved the dissolution rate and the extent of rosuvastatin release. Formulations for direct compression tablets included Formulation F1, a control with drug but with neither caffeine nor Soluplus® present; F2 with drug-caffeine complex; F3 with drug and Soluplus® and F4 with drug-caffeine complex and Soluplus®.

View Article and Find Full Text PDF

Certain issues with the use of particles of chitosan (Ch) cross-linked with tripolyphosphate (TPP) in sustained release formulations include inefficient drug loading, burst drug release, and incomplete drug release. Acetaminophen was added to Ch:TPP particles to test for advantages of drug addition extragranularly over drug addition made during cross-linking. The influences of Ch concentration, Ch:TPP ratio, temperature, ionic strength, and pH were assessed.

View Article and Find Full Text PDF

Objective: Fine particle ethylcellulose (FPEC) or poly(ethylene oxide) (PEO) addition to a Kollidon CL-SF was investigated to address low yield and poor sphericity in extruded-spheronized pellets.

Significance: The success of crospovidone as a diluent in extrusion-spheronization was dependent on a small particle size of the polymer. FPEC aided production of rugged and spherical pellets using a large particle size grade, Polyplasdone XL.

View Article and Find Full Text PDF

Purpose: To evaluate the physicochemical and in vitro characteristics of solid dispersions using BCS II model drugs with Soluplus® and one of its component homopolymers, PEG 6000.

Methods: Nifedipine (NIF) and sulfamethoxazole (SMX) of 99.3% and 99.

View Article and Find Full Text PDF

The search for excipients to replace microcrystalline cellulose (MCC) in the production of pellets by extrusion-spheronization in cases of drug incompatibility or the lack of pellet matrix disintegration forms the basis of this study. A combination of к-carrageenan as a spheronization aid, chitosan as a diluent and Carbopol(®) 974P as a binder in the production of pellets containing no MCC has been investigated using acetaminophen as a model drug. Design of experiments allowed assessment of formulation and processing effects on pellet responses that included size, shape, fines, yield and friability.

View Article and Find Full Text PDF

Context: Drug dispersed in a polymer can improve bioavailability; dispersed amorphous drug undergoes recrystallization. Solid solutions eliminate amorphous regions, but require a measure of the solubility.

Objective: Use the Flory-Huggins Theory to predict crystalline drugs solubility in the triblock, graft copolymer Soluplus® to provide a solid solution.

View Article and Find Full Text PDF

Context: Drug dispersed in a polymer can improve bioavailability; dispersed amorphous drug undergoes recrystallization. Solid solutions eliminate amorphous regions, but require a measure of the solubility.

Objective: Use the Flory-Huggins Theory to predict crystalline drugs solubility in the triblock, graft copolymer Soluplus® to provide a solid solution.

View Article and Find Full Text PDF

Successful pellet production has been reported in literature with cross-linked poly(vinylpyrrolidone), Polyplasdone® XL-10 and INF-10. In the present study, a quality by experimental design approach was used to assess several formulation and process parameter effects on the characteristics of Polyplasdone® XL-10 pellets, including pellet size, shape, yield, usable yield, friability, and number of fines. The hypothesis is that design of experiments and appropriate data analysis allow optimization of the Polyplasdone product.

View Article and Find Full Text PDF

The effect of small ethylcellulose particle size on the manufacture and properties of pellets produced by extrusion-spheronization was investigated. A factorial design revealed the effects of microcrystalline cellulose (MCC), polyethylene oxide (PEO), water, and spheronization speed and time on pellet properties. Response surface modeling allowed optimization of the responses with expansion to a central composite design.

View Article and Find Full Text PDF

Polyplasdone of different particle size was used to study the sorption, desorption, and distribution of water, and to seek evidence that larger particles can internalize water. The three samples were Polyplasdone® XL, XL-10, and INF-10. Moisture sorption and desorption isotherms at 25 °C at 5% intervals from 0 to 95% relative humidity (RH) were generated by dynamic vapor sorption analysis.

View Article and Find Full Text PDF

The ability of crospovidone to take up and distribute water in the polymer samples was studied using differential scanning calorimetry (DSC). Polyplasdone(®) is an example of crospovidone that, although insoluble in water, serves as a superdisintegrant. Three samples of Polyplasdone(®) with different mean particle size were studied to see the effect of particle size on the water uptake and distribution characteristics.

View Article and Find Full Text PDF

A multiparticulate product for colon-specific delivery of a small molecule drug has been developed and characterized. Microcrystalline cellulose core beads containing 5-aminosalicylic acid produced by extrusion-spheronization were coated with chitosan and Aquacoat(®) ECD mixtures according to a factorial design. Coated beads were characterized in terms of drug release, shape, and friability.

View Article and Find Full Text PDF

Hydralazine hydrochloride is an antihypertensive used alone or in combination with isosorbide nitrate for the treatment of congestive heart failure. Since control of blood pressure should be continuous, sustained release delivery of this drug is considered therapeutically beneficial. Core beads for oral administration of this drug were prepared by extrusion-spheronization.

View Article and Find Full Text PDF

The present research investigates the enhancement of the dissolution rate of celecoxib by using spray-drying to prepare a solid dispersion with various polymers, namely Kollicoat IR® (Kollicoat), polyvinyl alcohol (PVA) 22000, or polyethylene glycol 6000 (PEG). The investigated drug-to-polymer mass ratios were 1:1, 1:2, and 1:4 by weight. Hydroalcoholic or methylene chloride solvent systems were used.

View Article and Find Full Text PDF

Poly(vinylpyrrolidone) (PVP) hydrogels were crosslinked by gamma irradiation to add structure and rigidity, and then rheological and mucoadhesive properties were evaluated. The effects of PVP concentration, radiation dose, and additives, such as poly(ethylene glycol) (PEG) and glycerol, on rheological properties were investigated. In an oscillatory analysis, an increase in polymer concentrations increased the storage modulus (G') and the loss modulus (G″) but decreased the loss tangent (tan δ < 1).

View Article and Find Full Text PDF

The aim of this study was to investigate human erythrocytes as a carrier for targeted drug delivery of primaquine (PQ). The process of PQ loading in human erythrocytes, as well as the effect of PQ loading on the oxidative status of erythrocytes, was also studied. At PQ concentrations of 2, 4, 6, and 8 mg/mL and an incubation time of 2 h, the ratios of the concentrations of PQ entrapped in erythrocytes to that in the incubation medium were 0.

View Article and Find Full Text PDF

Introduction: Developments in industrial pharmacy are often linked to the discovery of pharmaceutical excipients. Although recently introduced as a material for immediate release coatings, Kollicoat IR already has other applications.

Areas Covered: In this review, the different properties and pharmaceutical applications of Kollicoat IR as an excipient are discussed.

View Article and Find Full Text PDF

Background: This study investigates a new means to achieve colon-specific drug delivery.

Objective: This study assesses the use of chitosan and ethylcellulose in the coat of a compression-coated tablet to achieve colon-specific drug delivery. The effects of chitosan type and its level as well as the coat thickness were evaluated.

View Article and Find Full Text PDF

The objectives were to characterize propranolol hydrochloride-loaded matrix tablets using guar gum, xanthan gum, and hydroxypropylmethylcellulose (HPMC) as rate-retarding polymers. Tablets were prepared by wet granulation using these polymers alone and in combination, and physical properties of the granules and tablets were studied. Drug release was evaluated in simulated gastric and intestinal media.

View Article and Find Full Text PDF

Itraconazole (ITZ) solid complex using hydroxypropyl-beta-cyclodextrin (ITZ-HP-beta-CD) with 20% polyvinylpyrrolidone was prepared by a co-evaporation method. The complex improved antifungal activity against C. parapasilosis and C.

View Article and Find Full Text PDF

The aim of this work was to study the ability of beta-cyclodextrin (beta-CD) or hydroxypropyl beta-cyclodextrin (HP-beta-CD) to ameliorate the induction of gastric ulcers by a nonsteroidal anti-inflammatory drug, indomethacin or piroxicam, in rats exposed to restraint and hypothermic stress at 4 degrees C. Using oral gavage, rats fasted for 72 h were administered the equivalent of a 100 mg/kg dose of the assigned drug, alone or with the designated cyclodextrin (CD). The rats were placed in suitable rodent restrainers and then placed inside a ventilated refrigerator maintained at a temperature of 4 degrees C.

View Article and Find Full Text PDF