In recent decades, the field of bone mechanobiology has sought experimental techniques to unravel the molecular mechanisms governing the phenomenon of mechanically regulated fracture healing. Each cell within a fracture site resides within different local microenvironments characterized by different levels of mechanical strain; thus, preserving the spatial location of each cell is critical in relating cellular responses to mechanical stimuli. Our spatial transcriptomics-based "mechanomics" platform facilitates spatially resolved analysis of the molecular profiles of cells with respect to their local in vivo mechanical environment by integrating time-lapsed in vivo micro-computed tomography, spatial transcriptomics, and micro-finite element analysis.
View Article and Find Full Text PDFFrailty, a geriatric syndrome, is assessed using the frailty phenotype (FP) and frailty index (FI). While these approaches have been applied to aging mice, their effectiveness in prematurely aging mouse models such as PolgA (PolgA) has not been completely explored. We demonstrated that frailty became evident in PolgA mice around 40 weeks, validated through body weight loss, reduced walking speed, decreased physical activity, and weaker grip strength.
View Article and Find Full Text PDFOsteoclasts are essential for bone remodeling by adapting their resorptive activity in response to their mechanical environment. However, the molecular mechanisms underlying this process remain unclear. Here, we demonstrated the role of tartrate-resistant acid phosphatase (TRAP, Acp5), a key enzyme secreted by osteoclasts, in bone remodeling and mechanosensitivity.
View Article and Find Full Text PDFHere, we present a protocol for using spatial transcriptomics in bone and multi-tissue musculoskeletal formalin-fixed paraffin-embedded (FFPE) samples from mice. We describe steps for tissue harvesting, sample preparation, paraffin embedding, and FFPE sample selection. We detail procedures for sectioning and placement on spatial slides prior to imaging, decrosslinking, library preparation, and final analyses of the sequencing data.
View Article and Find Full Text PDFMusculoskeletal aging encompasses the decline in bone and muscle function, leading to conditions such as frailty, osteoporosis, and sarcopenia. Unraveling the underlying molecular mechanisms and developing effective treatments are crucial for improving the quality of life for those affected. In this context, accelerated aging models offer valuable insights into these conditions by displaying the hallmarks of human aging.
View Article and Find Full Text PDFPharmacological interventions that combine pro-anabolic and anti-catabolic drugs to treat recalcitrant fractures have shown remarkable efficacy in augmenting the regenerative response. Specifically, in rodent models of fracture repair, treatment with BMP-7 and Zoledronate (ZA) has almost uniformally resulted in complete union. However, delayed remodeling may be problematic for ZA-treated fractures.
View Article and Find Full Text PDFPositron emission tomography (PET) is a form of nuclear imaging, which quantitatively assesses the metabolic activity through the uptake of radioactive tracers. F-fluoride is a positron-emitting isotope with high affinity for bone. Despite its potential as a non-invasive measure of bone metabolism, quantitative F-fluoride PET has only been used sparsely in orthopaedic applications.
View Article and Find Full Text PDFUnlabelled: The incidence of fragility fractures is expected to increase in the near future due to an aging population. Therefore, improved tools for fracture prediction are required to treat and prevent these injuries efficiently. For such tools to succeed, a better understanding of the deformation mechanisms in bone over different length scales is needed.
View Article and Find Full Text PDFOsteoporosis, a prevalent metabolic bone disorder, predisposes individuals to increased susceptibility to fractures. It is also, somewhat controversially, thought to delay or impair the regenerative response. Using high-resolution Fourier-transform infrared spectroscopy and small/wide-angle X-ray scattering we sought to answer the following questions: Does the molecular composition and the nano-structure in the newly regenerated bone differ between healthy and osteoporotic environments? And how do pharmacological treatments, such as bone morphogenetic protein 7 (BMP-7) alone or synergistically combined with zoledronate (ZA), alter callus composition and nano-structure in such environments? Cumulatively, on the basis of compositional and nano-structural characterizations of newly formed bone in an open-osteotomy rat model, the healing response in untreated healthy and ovariectomy-induced osteoporotic environments was fundamentally the same.
View Article and Find Full Text PDFDespite the vast amount of studies focusing on bone nanostructure that have been performed for several decades, doubts regarding the detailed structure of the constituting hydroxyapatite crystal still exist. Different experimental techniques report somewhat different sizes and locations, possibly due to different requirements for the sample preparation. In this study, small- and wide-angle X-ray scattering is used to investigate the nanostructure of femur samples from young adult ovine, bovine, porcine, and murine cortical bone, including three different orthogonal directions relative to the long axis of the bone.
View Article and Find Full Text PDFThe ovariectomized (OVX) rat model is well established in investigations of osteoporosis and osteoporotic therapies. Advent of techniques such as Fourier-transform infrared (FTIR) spectroscopy and small angle X-ray scattering (SAXS) facilitate characterization of bone composition and mineral structure, respectively, which are key determinants of bone strength. Limited publications exist on the implementation of these techniques in the OVX rat model.
View Article and Find Full Text PDFCannabinoid ligands regulate bone mass, but skeletal effects of cannabis (marijuana and hashish) have not been reported. Bone fractures are highly prevalent, involving prolonged immobilization and discomfort. Here we report that the major non-psychoactive cannabis constituent, cannabidiol (CBD), enhances the biomechanical properties of healing rat mid-femoral fractures.
View Article and Find Full Text PDFRett syndrome (RTT) is an X-linked genetic disorder and a major cause of intellectual disability in girls. Mutations in the methyl-CpG binding protein 2 (MECP2) gene are the primary cause of the disorder. Despite the dominant neurological phenotypes, MECP2 is expressed ubiquitously throughout the body and a number of peripheral phenotypes such as scoliosis, reduced bone mineral density and skeletal fractures are also common and important clinical features of the disorder.
View Article and Find Full Text PDFBone grafts are well-established in the treatment of fracture non-unions but union is still not always achieved. Harvesting autograft is associated with donor site morbidity and the available amount of bone is limited. Allograft is more easily obtained and available in greater quantities but lacks the osteoinductive characteristics of autograft.
View Article and Find Full Text PDF